Free monotone transport without a trace

Brent Nelson
UCLA

November 2, 2014

Let t_{1}, \ldots, t_{N} be non-commuting indeterminates and denote $\mathscr{P}=\mathbb{C}\left\langle t_{1}, \ldots, t_{N}\right\rangle$, the non-commutative polynomials in t_{1}, \ldots, t_{N}.

Let t_{1}, \ldots, t_{N} be non-commuting indeterminates and denote $\mathscr{P}=\mathbb{C}\left\langle t_{1}, \ldots, t_{N}\right\rangle$, the non-commutative polynomials in t_{1}, \ldots, t_{N}.

Joint laws

Let X_{1}, \ldots, X_{N} be self-adjoint elements in a von Neumann algebra with a state φ and denote $X=\left(X_{1}, \ldots, X_{N}\right)$. The joint law of X_{1}, \ldots, X_{N} with respect to φ, denoted φ_{X}, is the linear functional on \mathscr{P} defined by

$$
\varphi_{X}\left(P\left(t_{1}, \ldots, t_{N}\right)\right):=\varphi\left(P\left(X_{1}, \ldots, X_{N}\right)\right) \quad P \in \mathscr{P}
$$

Classical Transport

- Transport from (X, μ) to (Z, ν) is a map $T: X \rightarrow Z$ such that $T_{*} \mu=\nu$
- Induces integral-preserving embedding $L^{\infty}(Z, \nu) \hookrightarrow L^{\infty}(X, \mu)$ via $f \mapsto f \circ T$

Classical Transport

- Transport from (X, μ) to (Z, ν) is a map $T: X \rightarrow Z$ such that $T_{*} \mu=\nu$
- Induces integral-preserving embedding $L^{\infty}(Z, \nu) \hookrightarrow L^{\infty}(X, \mu)$ via $f \mapsto f \circ T$

Free transport

Let $X=\left(X_{1}, \ldots, X_{N}\right) \subset M$ and $Z=\left(Z_{1}, \ldots, Z_{N}\right) \subset L$, where M and L are von Neumann algebras with faithful states φ and ψ, respectively. Then transport from φ_{X} to ψ_{Z} is an N-tuple $Y=\left(Y_{1}, \ldots, Y_{N}\right) \subset W^{*}\left(X_{1}, \ldots, X_{N}\right) \subset M$ so that $\varphi_{Y}=\psi_{Z}$.

Note that the existence of transport implies $Z_{j} \mapsto Y_{j}$ is a state-preserving embedding of $W^{*}\left(Z_{1}, \ldots, Z_{N}\right)$ into $W^{*}\left(X_{1}, \ldots, X_{N}\right)$.

Shlyakhtenko 1997:

- Given $\left\{U_{t}\right\}_{t \in \mathbb{R}}$ a strongly continuous one-parameter group of orthogonal transformations on a real Hilbert space $\mathcal{H}_{\mathbb{R}}$
- Extend each U_{t} to unitary on $\mathcal{H}_{\mathbb{C}}=\mathcal{H}_{\mathbb{R}}+i \mathcal{H}_{\mathbb{R}}$ and let $A>0$ be generator: $U_{t}=A^{i t}$

Shlyakhtenko 1997:

- Given $\left\{U_{t}\right\}_{t \in \mathbb{R}}$ a strongly continuous one-parameter group of orthogonal transformations on a real Hilbert space $\mathcal{H}_{\mathbb{R}}$
- Extend each U_{t} to unitary on $\mathcal{H}_{\mathbb{C}}=\mathcal{H}_{\mathbb{R}}+i \mathcal{H}_{\mathbb{R}}$ and let $A>0$ be generator: $U_{t}=A^{i t}$
- Examples:

1. $U_{t}=I_{N} \in M_{N}(\mathbb{R})$ for all $t \Rightarrow A=I_{N}$
2. For $\lambda>0$

$$
\begin{aligned}
U_{t} & =\left(\begin{array}{cc}
\cos (t \log \lambda) & -\sin (t \log \lambda) \\
\sin (t \log \lambda) & \cos (t \log \lambda)
\end{array}\right) \\
A & =\frac{1}{2}\left(\begin{array}{cc}
\lambda+\lambda^{-1} & -i\left(\lambda-\lambda^{-1}\right) \\
i\left(\lambda-\lambda^{-1}\right) & \lambda+\lambda^{-1}
\end{array}\right)
\end{aligned}
$$

Shlyakhtenko 1997:

- Given $\left\{U_{t}\right\}_{t \in \mathbb{R}}$ a strongly continuous one-parameter group of orthogonal transformations on a real Hilbert space $\mathcal{H}_{\mathbb{R}}$
- Extend each U_{t} to unitary on $\mathcal{H}_{\mathbb{C}}=\mathcal{H}_{\mathbb{R}}+i \mathcal{H}_{\mathbb{R}}$ and let $A>0$ be generator: $U_{t}=A^{i t}$
- Examples:

1. $U_{t}=I_{N} \in M_{N}(\mathbb{R})$ for all $t \Rightarrow A=I_{N}$
2. For $\lambda>0$

$$
\begin{aligned}
U_{t} & =\left(\begin{array}{cc}
\cos (t \log \lambda) & -\sin (t \log \lambda) \\
\sin (t \log \lambda) & \cos (t \log \lambda)
\end{array}\right) \\
A & =\frac{1}{2}\left(\begin{array}{cc}
\lambda+\lambda^{-1} & -i\left(\lambda-\lambda^{-1}\right) \\
i\left(\lambda-\lambda^{-1}\right) & \lambda+\lambda^{-1}
\end{array}\right)
\end{aligned}
$$

- Define new inner product:

$$
\langle x, y\rangle_{U}=\left\langle\frac{2}{1+A^{-1}} x, y\right\rangle \quad x, y \in \mathcal{H}_{\mathbb{C}}
$$

and let \mathcal{H} be the closure of $\mathcal{H}_{\mathbb{C}}$ with respect to this inner product

Shlyakhtenko 1997:

- Let $\mathcal{F}(\mathcal{H})$ be the full Fock space:

$$
\mathcal{F}(\mathcal{H})=\overline{\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}}
$$

Shlyakhtenko 1997:

- Let $\mathcal{F}(\mathcal{H})$ be the full Fock space:

$$
\mathcal{F}(\mathcal{H})=\overline{\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}}
$$

- Define $s(x)=\ell(x)+\ell(x)^{*} \in \mathcal{B}(\mathcal{F}(\mathcal{H}))$ for $x \in \mathcal{H}$ where

$$
\ell(x) f_{1} \otimes \cdots \otimes f_{n}=x \otimes f_{1} \otimes \cdots \otimes f_{n} \quad \ell(x)^{*} f_{1} \otimes \cdots \otimes f_{n}=\left\langle x, f_{1}\right\rangle_{U} f_{2} \otimes \cdots \otimes f_{n}
$$

Shlyakhtenko 1997:

- Let $\mathcal{F}(\mathcal{H})$ be the full Fock space:

$$
\mathcal{F}(\mathcal{H})=\overline{\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}}
$$

- Define $s(x)=\ell(x)+\ell(x)^{*} \in \mathcal{B}(\mathcal{F}(\mathcal{H}))$ for $x \in \mathcal{H}$ where

$$
\ell(x) f_{1} \otimes \cdots \otimes f_{n}=x \otimes f_{1} \otimes \cdots \otimes f_{n} \quad \ell(x)^{*} f_{1} \otimes \cdots \otimes f_{n}=\left\langle x, f_{1}\right\rangle_{U} f_{2} \otimes \cdots \otimes f_{n}
$$

- The free Araki-Woods factor is $\Gamma\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}:=W^{*}\left(s(x): x \in \mathcal{H}_{\mathbb{R}}\right) \subset \mathcal{B}(\mathcal{F}(\mathcal{H}))$
- The free quasi-free state φ is the vector state on $\mathcal{B}(\mathcal{F}(\mathcal{H}))$ corresponding to Ω, is normal and faithful on $\Gamma\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$

Shlyakhtenko 1997:

- Let $\mathcal{F}(\mathcal{H})$ be the full Fock space:

$$
\mathcal{F}(\mathcal{H})=\overline{\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}}
$$

- Define $s(x)=\ell(x)+\ell(x)^{*} \in \mathcal{B}(\mathcal{F}(\mathcal{H}))$ for $x \in \mathcal{H}$ where

$$
\ell(x) f_{1} \otimes \cdots \otimes f_{n}=x \otimes f_{1} \otimes \cdots \otimes f_{n} \quad \ell(x)^{*} f_{1} \otimes \cdots \otimes f_{n}=\left\langle x, f_{1}\right\rangle_{U} f_{2} \otimes \cdots \otimes f_{n}
$$

- The free Araki-Woods factor is $\Gamma\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}:=W^{*}\left(s(x): x \in \mathcal{H}_{\mathbb{R}}\right) \subset \mathcal{B}(\mathcal{F}(\mathcal{H}))$
- The free quasi-free state φ is the vector state on $\mathcal{B}(\mathcal{F}(\mathcal{H}))$ corresponding to Ω, is normal and faithful on $\Gamma\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$
- $\Gamma\left(\mathbb{R}^{N}, I_{N}\right)^{\prime \prime}=L \mathbb{F}_{N}$

Shlyakhtenko 1997:

- Let $\mathcal{F}(\mathcal{H})$ be the full Fock space:

$$
\mathcal{F}(\mathcal{H})=\overline{\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}}
$$

- Define $s(x)=\ell(x)+\ell(x)^{*} \in \mathcal{B}(\mathcal{F}(\mathcal{H}))$ for $x \in \mathcal{H}$ where

$$
\ell(x) f_{1} \otimes \cdots \otimes f_{n}=x \otimes f_{1} \otimes \cdots \otimes f_{n} \quad \ell(x)^{*} f_{1} \otimes \cdots \otimes f_{n}=\left\langle x, f_{1}\right\rangle_{U} f_{2} \otimes \cdots \otimes f_{n}
$$

- The free Araki-Woods factor is $\Gamma\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}:=W^{*}\left(s(x): x \in \mathcal{H}_{\mathbb{R}}\right) \subset \mathcal{B}(\mathcal{F}(\mathcal{H}))$
- The free quasi-free state φ is the vector state on $\mathcal{B}(\mathcal{F}(\mathcal{H}))$ corresponding to Ω, is normal and faithful on $\Gamma\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$
- $\Gamma\left(\mathbb{R}^{N}, I_{N}\right)^{\prime \prime}=L \mathbb{F}_{N}$
- In fact, if $G \subset \mathbb{R}_{+}^{\times}$is the closed subgroup generated by the spectrum of A then

$$
\Gamma\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime} \text { is a factor of type }\left\{\begin{aligned}
\mathrm{II}_{1} & \text { if } G=\mathbb{R}_{+}^{\times} \\
\mathrm{II}_{\lambda} & \text { if } G=\lambda^{\mathbb{Z}} \\
\mathrm{II}_{1} & \text { if } G=\{1\}
\end{aligned}\right.
$$

We let $M=\Gamma\left(\mathbb{R}^{N}, U_{t}\right)^{\prime \prime}$ and $X_{j}=s\left(e_{j}\right)$, where $\left\{e_{1}, \ldots, e_{N}\right\} \subset \mathbb{R}^{N}$ is the standard basis. Thus

$$
M=W^{*}\left(X_{1}, \ldots, X_{N}\right)
$$

Our goal is to construct transport from $\varphi_{X}\left(\right.$ with $\left.X=\left(X_{1}, \ldots, X_{N}\right)\right)$.

Let $\mathscr{P}(X)$ denote the non-commutative polynomials in X_{1}, \ldots, X_{N}.

Let $\mathscr{P}(X)$ denote the non-commutative polynomials in X_{1}, \ldots, X_{N}.

Voiculescu's free difference quotients

- For each $j=1, \ldots, N$ the j th free difference quotient $\delta_{j}: \mathscr{P}(X) \rightarrow \mathscr{P}(X) \otimes \mathscr{P}(X)^{o p}$ is defined by

$$
\begin{aligned}
\delta_{j}\left(X_{k}\right) & =\delta_{j=k} 1 \otimes 1^{\circ} \\
\delta_{j}(P Q) & =\delta_{j}(P) \cdot Q+P \cdot \delta_{j}(Q)
\end{aligned}
$$

- $\delta_{1}\left(X_{1} X_{2} X_{1} X_{2}\right)=1 \otimes\left(X_{2} X_{1} X_{2}\right)^{\circ}+X_{1} X_{2} \otimes X_{2}^{\circ}$

Let $\mathscr{P}(X)$ denote the non-commutative polynomials in X_{1}, \ldots, X_{N}.

Voiculescu's free difference quotients

- For each $j=1, \ldots, N$ the j th free difference quotient $\delta_{j}: \mathscr{P}(X) \rightarrow \mathscr{P}(X) \otimes \mathscr{P}(X)^{o p}$ is defined by

$$
\begin{aligned}
\delta_{j}\left(X_{k}\right) & =\delta_{j=k} 1 \otimes 1^{\circ} \\
\delta_{j}(P Q) & =\delta_{j}(P) \cdot Q+P \cdot \delta_{j}(Q)
\end{aligned}
$$

- $\delta_{1}\left(X_{1} X_{2} X_{1} X_{2}\right)=1 \otimes\left(X_{2} X_{1} X_{2}\right)^{\circ}+X_{1} X_{2} \otimes X_{2}^{\circ}$

We then define the jth σ-difference quotient $\partial_{j}: \mathscr{P}(X) \rightarrow \mathscr{P}(X) \otimes \mathscr{P}(X)^{o p}$ as

$$
\partial_{j}:=\sum_{k=1}^{N}\left[\frac{2}{1+A}\right]_{k j} \delta_{k} .
$$

Let $\mathscr{P}(X)$ denote the non-commutative polynomials in X_{1}, \ldots, X_{N}.

Voiculescu's free difference quotients

- For each $j=1, \ldots, N$ the j th free difference quotient $\delta_{j}: \mathscr{P}(X) \rightarrow \mathscr{P}(X) \otimes \mathscr{P}(X)^{o p}$ is defined by

$$
\begin{aligned}
\delta_{j}\left(X_{k}\right) & =\delta_{j=k} 1 \otimes 1^{\circ} \\
\delta_{j}(P Q) & =\delta_{j}(P) \cdot Q+P \cdot \delta_{j}(Q)
\end{aligned}
$$

- $\delta_{1}\left(X_{1} X_{2} X_{1} X_{2}\right)=1 \otimes\left(X_{2} X_{1} X_{2}\right)^{\circ}+X_{1} X_{2} \otimes X_{2}^{\circ}$

We then define the jth σ-difference quotient $\partial_{j}: \mathscr{P}(X) \rightarrow \mathscr{P}(X) \otimes \mathscr{P}(X)^{o p}$ as

$$
\partial_{j}:=\sum_{k=1}^{N}\left[\frac{2}{1+A}\right]_{k j} \delta_{k} .
$$

Proposition

Let M, X_{1}, \ldots, X_{N}, and φ be as above. Then for each $j=1, \ldots, N$ and every $P \in \mathscr{P}(X)$

$$
\varphi\left(X_{j} P\right)=\varphi \otimes \varphi^{o p}\left(\partial_{j} P\right)
$$

For each $j=1, \ldots, N$ we define the j th σ-cyclic derivative $\mathscr{D}_{j}: \mathscr{P}(X) \rightarrow \mathscr{P}(X)$ by

$$
\mathscr{D}_{j} P=\sum_{k=1}^{N}\left[\frac{2}{1+A}\right]_{j k} \sum_{P=A X_{k} B} \sigma_{-i}^{\varphi}(B) A,
$$

where we note

$$
\sigma_{z}^{\varphi}\left(X_{j}\right)=\sum_{k=1}^{N}\left[A^{i z}\right]_{j k} X_{k}=\left[A^{i z} X\right]_{j}
$$

For each $j=1, \ldots, N$ we define the j th σ-cyclic derivative $\mathscr{D}_{j}: \mathscr{P}(X) \rightarrow \mathscr{P}(X)$ by

$$
\mathscr{D}_{j} P=\sum_{k=1}^{N}\left[\frac{2}{1+A}\right]_{j k} \sum_{P=A X_{k} B} \sigma_{-i}^{\varphi}(B) A,
$$

where we note

$$
\sigma_{z}^{\varphi}\left(X_{j}\right)=\sum_{k=1}^{N}\left[A^{i z}\right]_{j k} X_{k}=\left[A^{i z} X\right]_{j}
$$

A special potential

We first note

$$
\mathscr{D}_{\ell}\left(X_{k} X_{j}\right)=\left[\frac{2}{1+A}\right]_{\ell k} \sigma_{-i}^{\varphi}\left(X_{j}\right)+\left[\frac{2}{1+A}\right]_{\ell j} X_{k}
$$

For each $j=1, \ldots, N$ we define the j th σ-cyclic derivative $\mathscr{D}_{j}: \mathscr{P}(X) \rightarrow \mathscr{P}(X)$ by

$$
\mathscr{D}_{j} P=\sum_{k=1}^{N}\left[\frac{2}{1+A}\right]_{j k} \sum_{P=A X_{k} B} \sigma_{-i}^{\varphi}(B) A,
$$

where we note

$$
\sigma_{z}^{\varphi}\left(X_{j}\right)=\sum_{k=1}^{N}\left[A^{i z}\right]_{j k} X_{k}=\left[A^{i z} X\right]_{j}
$$

A special potential

We first note

$$
\begin{aligned}
\mathscr{D}_{\ell}\left(X_{k} X_{j}\right) & =\left[\frac{2}{1+A}\right]_{\ell k} \sigma_{-i}^{\varphi}\left(X_{j}\right)+\left[\frac{2}{1+A}\right]_{\ell j} X_{k} \\
& =\left[\frac{2}{1+A^{-1}}\right]_{\ell k} X_{j}+\left[\frac{2}{1+A}\right]_{\ell j} X_{k}
\end{aligned}
$$

For each $j=1, \ldots, N$ we define the j th σ-cyclic derivative $\mathscr{D}_{j}: \mathscr{P}(X) \rightarrow \mathscr{P}(X)$ by

$$
\mathscr{D}_{j} P=\sum_{k=1}^{N}\left[\frac{2}{1+A}\right]_{j k} \sum_{P=A X_{k} B} \sigma_{-i}^{\varphi}(B) A,
$$

where we note

$$
\sigma_{z}^{\varphi}\left(X_{j}\right)=\sum_{k=1}^{N}\left[A^{i z}\right]_{j k} X_{k}=\left[A^{i z} X\right]_{j}
$$

A special potential

We first note

$$
\begin{aligned}
\mathscr{D}_{\ell}\left(X_{k} X_{j}\right) & =\left[\frac{2}{1+A}\right]_{\ell k} \sigma_{-i}^{\varphi}\left(X_{j}\right)+\left[\frac{2}{1+A}\right]_{\ell j} X_{k} \\
& =\left[\frac{2}{1+A^{-1}}\right]_{\ell k} X_{j}+\left[\frac{2}{1+A}\right]_{\ell j} X_{k} \\
& =\left[\frac{2}{1+A}\right]_{k \ell} X_{j}+\left[\frac{2}{1+A}\right]_{\ell j} X_{k}
\end{aligned}
$$

A special potential

Thus

$$
\mathscr{D}_{\ell}\left(X_{k} X_{j}\right)=\left[\frac{2}{1+A}\right]_{k \ell} X_{j}+\left[\frac{2}{1+A}\right]_{\ell j} X_{k}
$$

and consequently if

$$
V_{0}:=\frac{1}{2} \sum_{j, k=1}^{N}\left[\frac{1+A}{2}\right]_{j k} X_{k} X_{j}
$$

then its easy to see that

$$
\mathscr{D}_{\ell} V_{0}=X_{\ell} \quad \ell=1, \ldots, N .
$$

A special potential

Thus

$$
\mathscr{D}_{\ell}\left(X_{k} X_{j}\right)=\left[\frac{2}{1+A}\right]_{k \ell} X_{j}+\left[\frac{2}{1+A}\right]_{\ell j} X_{k}
$$

and consequently if

$$
V_{0}:=\frac{1}{2} \sum_{j, k=1}^{N}\left[\frac{1+A}{2}\right]_{j k} X_{k} X_{j}
$$

then its easy to see that

$$
\mathscr{D}_{\ell} V_{0}=X_{\ell} \quad \ell=1, \ldots, N
$$

Proposition

Let $M, X_{1}, \ldots, X_{N}, \varphi$, and V_{0} be as above. Then for each $j=1, \ldots, N$ and every $P \in \mathscr{P}(X)$

$$
\varphi\left(\mathscr{D}_{j}\left(V_{0}\right) P\right)=\varphi \otimes \varphi^{o p}\left(\partial_{j} P\right)
$$

Observe that provided we fix A we can make sense of ∂_{j} and \mathscr{D}_{j} on \mathscr{P}.

Free Gibbs state

Fix $V \in \mathscr{P}$. A linear functional ψ on \mathscr{P} is called a free Gibbs state with potential V if for each $j=1, \ldots, N$ and every $P \in \mathscr{P}$

$$
\psi\left(\mathscr{D}_{j}(V) P\right)=\psi \otimes \psi^{o P}\left(\partial_{j} P\right)
$$

Observe that provided we fix A we can make sense of ∂_{j} and \mathscr{D}_{j} on \mathscr{P}.

Free Gibbs state

Fix $V \in \mathscr{P}$. A linear functional ψ on \mathscr{P} is called a free Gibbs state with potential V if for each $j=1, \ldots, N$ and every $P \in \mathscr{P}$

$$
\psi\left(\mathscr{D}_{j}(V) P\right)=\psi \otimes \psi^{o P}\left(\partial_{j} P\right)
$$

- φ_{X} is the free Gibbs state with potential V_{0}.

Observe that provided we fix A we can make sense of ∂_{j} and \mathscr{D}_{j} on \mathscr{P}.

Free Gibbs state

Fix $V \in \mathscr{P}$. A linear functional ψ on \mathscr{P} is called a free Gibbs state with potential V if for each $j=1, \ldots, N$ and every $P \in \mathscr{P}$

$$
\psi\left(\mathscr{D}_{j}(V) P\right)=\psi \otimes \psi^{o P}\left(\partial_{j} P\right)
$$

- φ_{X} is the free Gibbs state with potential V_{0}.
- For $R>0$, we consider particular Banach norms $\|\cdot\|_{R, \sigma}$ on \mathscr{P} such that $\overline{\mathscr{P}}^{\|\cdot\|_{R, \sigma}}$ can be thought of as convergent power series with radius of convergence at least R.

Observe that provided we fix A we can make sense of ∂_{j} and \mathscr{D}_{j} on \mathscr{P}.

Free Gibbs state

Fix $V \in \mathscr{P}$. A linear functional ψ on \mathscr{P} is called a free Gibbs state with potential V if for each $j=1, \ldots, N$ and every $P \in \mathscr{P}$

$$
\psi\left(\mathscr{D}_{j}(V) P\right)=\psi \otimes \psi^{o P}\left(\partial_{j} P\right)
$$

- φ_{X} is the free Gibbs state with potential V_{0}.
- For $R>0$, we consider particular Banach norms $\|\cdot\|_{R, \sigma}$ on \mathscr{P} such that $\overline{\mathscr{P}}^{\|\cdot\|_{R, \sigma}}$ can be thought of as convergent power series with radius of convergence at least R.
- In the definition of a free Gibbs state, V can be taken from $\overline{\mathscr{P}}^{\|\cdot\|_{R, \sigma}}$.

Observe that provided we fix A we can make sense of ∂_{j} and \mathscr{D}_{j} on \mathscr{P}.

Free Gibbs state

Fix $V \in \mathscr{P}$. A linear functional ψ on \mathscr{P} is called a free Gibbs state with potential V if for each $j=1, \ldots, N$ and every $P \in \mathscr{P}$

$$
\psi\left(\mathscr{D}_{j}(V) P\right)=\psi \otimes \psi^{o p}\left(\partial_{j} P\right)
$$

- φ_{X} is the free Gibbs state with potential V_{0}.
- For $R>0$, we consider particular Banach norms $\|\cdot\|_{R, \sigma}$ on \mathscr{P} such that $\overline{\mathscr{P}}^{\|\cdot\|_{R, \sigma}}$ can be thought of as convergent power series with radius of convergence at least R.
- In the definition of a free Gibbs state, V can be taken from $\overline{\mathscr{P}}^{\|\cdot\|_{R, \sigma}}$.
- If $R \geq\left\|X_{1}\right\|, \ldots,\left\|X_{N}\right\|$ then $P(X) \in M$ whenever $P \in \overline{\mathscr{P}}^{\|\cdot\|_{R, \sigma}}$ and $\left\|\sigma_{i k}^{\varphi}(P(X))\right\|_{R, \sigma}=\|P(X)\|_{R, \sigma}$ for all $k \in \mathbb{Z}$.

Theorem (N. 2013)

- Let $M, X_{1}, \ldots, X_{N}, \varphi$, and V_{0} as above.
- Let $Z=\left(Z_{1}, \ldots, Z_{N}\right)$ be elements in a von Neumann algebra L with faithful state ψ.
- Assume ψ_{z} is a free Gibbs state with potential $V \in \overline{\mathscr{P}}^{\|\cdot\|_{R, \sigma}}$, with $R \geq\left\|X_{1}\right\|, \ldots,\left\|X_{N}\right\|$.

There exists $\epsilon>0$ (depending on N, A, and R) such that if $\left\|V-V_{0}\right\|_{R, \sigma}<\epsilon$ then transport from φ_{X} to ψ_{Z} exists.

Theorem (N. 2013)

- Let $M, X_{1}, \ldots, X_{N}, \varphi$, and V_{0} as above.
- Let $Z=\left(Z_{1}, \ldots, Z_{N}\right)$ be elements in a von Neumann algebra L with faithful state ψ.
- Assume ψ_{z} is a free Gibbs state with potential $V \in \overline{\mathscr{P}}^{\|\cdot\|_{R, \sigma}}$, with $R \geq\left\|X_{1}\right\|, \ldots,\left\|X_{N}\right\|$.

There exists $\epsilon>0$ (depending on N, A, and R) such that if $\left\|V-V_{0}\right\|_{R, \sigma}<\epsilon$ then transport from φ_{X} to ψ_{z} exists.
In particular, the transport elements Y_{1}, \ldots, Y_{N} are convergent power series in X_{1}, \ldots, X_{N}. By shrinking ϵ if necessary, we can write X_{1}, \ldots, X_{N} as power series in Y_{1}, \ldots, Y_{N} and therefore $Z_{j} \mapsto Y_{j}$ gives a state-preserving isomorphism

$$
\begin{aligned}
C^{*}\left(Z_{1}, \ldots, Z_{N}\right) & \cong C^{*}\left(X_{1}, \ldots, X_{N}\right) \\
W^{*}\left(Z_{1}, \ldots, Z_{N}\right) & \cong M
\end{aligned}
$$

Theorem (Guionnet, Maurel-Segala 2006)

Let $R>0$. There exists $\epsilon>0$ (depending on N, A, and R) so that the free Gibbs state with potential V is unique whenever $\left\|V-V_{0}\right\|_{R, \sigma}<\epsilon$.

Theorem (Guionnet, Maurel-Segala 2006)

Let $R>0$. There exists $\epsilon>0$ (depending on N, A, and R) so that the free Gibbs state with potential V is unique whenever $\left\|V-V_{0}\right\|_{R, \sigma}<\epsilon$.

Proof of non-tracial transport theorem.

- Suffices to construct $Y_{1}, \ldots, Y_{N} \in M$ whose joint law with respect to φ is the free Gibbs state with potential V

Theorem (Guionnet, Maurel-Segala 2006)

Let $R>0$. There exists $\epsilon>0$ (depending on N, A, and R) so that the free Gibbs state with potential V is unique whenever $\left\|V-V_{0}\right\|_{R, \sigma}<\epsilon$.

Proof of non-tracial transport theorem.

- Suffices to construct $Y_{1}, \ldots, Y_{N} \in M$ whose joint law with respect to φ is the free Gibbs state with potential V
- Assume each $Y_{j}=X_{j}+\mathscr{D}_{j} G$ with $G \in \overline{\mathscr{P}(X)}{ }^{\|\cdot\|_{R, \sigma}}$ (reasonable since V is close to V_{0})

Theorem (Guionnet, Maurel-Segala 2006)

Let $R>0$. There exists $\epsilon>0$ (depending on N, A, and R) so that the free Gibbs state with potential V is unique whenever $\left\|V-V_{0}\right\|_{R, \sigma}<\epsilon$.

Proof of non-tracial transport theorem.

- Suffices to construct $Y_{1}, \ldots, Y_{N} \in M$ whose joint law with respect to φ is the free Gibbs state with potential V
- Assume each $Y_{j}=X_{j}+\mathscr{D}_{j} G$ with $G \in \overline{\mathscr{P}(X)}{ }^{\|\cdot\|_{R, \sigma}}$ (reasonable since V is close to V_{0})
- Joint law of Y_{j} 's being free Gibbs state with potential V is equivalent to G being the fixed point of a mapping F_{V} on the unit ball of $\overline{\mathscr{P}(X)} \|^{\|\cdot\|_{R, \sigma}}$

Theorem (Guionnet, Maurel-Segala 2006)

Let $R>0$. There exists $\epsilon>0$ (depending on N, A, and R) so that the free Gibbs state with potential V is unique whenever $\left\|V-V_{0}\right\|_{R, \sigma}<\epsilon$.

Proof of non-tracial transport theorem.

- Suffices to construct $Y_{1}, \ldots, Y_{N} \in M$ whose joint law with respect to φ is the free Gibbs state with potential V
- Assume each $Y_{j}=X_{j}+\mathscr{D}_{j} G$ with $G \in \overline{\mathscr{P}(X)}{ }^{\|\cdot\|_{R, \sigma}}$ (reasonable since V is close to V_{0})
- Joint law of Y_{j} 's being free Gibbs state with potential V is equivalent to G being the fixed point of a mapping F_{V} on the unit ball of $\overline{\mathscr{P}(X)}{ }^{\|\cdot\|_{R, \sigma}}$
- Can show F_{V} is locally Lipschitz

Hiai 2003:

- Given $q \in(-1,1)$, the q-Fock space $\mathcal{F}_{q}(\mathcal{H})$ is the completion of $\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}$ with respect to

$$
\left\langle f_{1} \otimes \cdots \otimes f_{n}, g_{1} \otimes \cdots \otimes g_{m}\right\rangle_{U, q}=\delta_{n=m} \sum_{\pi \in S_{n}} q^{i(\pi)} \prod_{k=1}^{n}\left\langle f_{k}, g_{\pi(k)}\right\rangle_{U}
$$

Note $\mathcal{F}_{0}(\mathcal{H})=\mathcal{F}(\mathcal{H})$

Hiai 2003:

- Given $q \in(-1,1)$, the q-Fock space $\mathcal{F}_{q}(\mathcal{H})$ is the completion of $\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}$ with respect to

$$
\left\langle f_{1} \otimes \cdots \otimes f_{n}, g_{1} \otimes \cdots \otimes g_{m}\right\rangle_{U, q}=\delta_{n=m} \sum_{\pi \in S_{n}} q^{i(\pi)} \prod_{k=1}^{n}\left\langle f_{k}, g_{\pi(k)}\right\rangle_{u}
$$

Note $\mathcal{F}_{0}(\mathcal{H})=\mathcal{F}(\mathcal{H})$

- $\ell_{q}(x)$ for $x \in \mathcal{H}$ is defined as before but now

$$
\ell_{q}(x)^{*} f_{1} \otimes \cdots \otimes f_{n}=\sum_{k=1}^{n} q^{k-1}\left\langle x, f_{k}\right\rangle_{U} f_{1} \otimes \cdots \otimes \hat{f}_{k} \otimes \cdots \otimes f_{n}
$$

Hiai 2003:

- Given $q \in(-1,1)$, the q-Fock space $\mathcal{F}_{q}(\mathcal{H})$ is the completion of $\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}$ with respect to

$$
\left\langle f_{1} \otimes \cdots \otimes f_{n}, g_{1} \otimes \cdots \otimes g_{m}\right\rangle_{U, q}=\delta_{n=m} \sum_{\pi \in S_{n}} q^{i(\pi)} \prod_{k=1}^{n}\left\langle f_{k}, g_{\pi(k)}\right\rangle_{u}
$$

Note $\mathcal{F}_{0}(\mathcal{H})=\mathcal{F}(\mathcal{H})$

- $\ell_{q}(x)$ for $x \in \mathcal{H}$ is defined as before but now

$$
\ell_{q}(x)^{*} f_{1} \otimes \cdots \otimes f_{n}=\sum_{k=1}^{n} q^{k-1}\left\langle x, f_{k}\right\rangle_{U} f_{1} \otimes \cdots \otimes \hat{f}_{k} \otimes \cdots \otimes f_{n}
$$

- Letting $s_{q}(x)=\ell_{q}(x)+\ell_{q}(x)^{*}$, the q-deformed Araki-Woods algebra is $\Gamma_{q}\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}=W^{*}\left(s_{q}(x): x \in \mathcal{H}_{\mathbb{R}}\right)$
- The q-quasi-free state φ_{q} is the vector state corresponding to Ω, is normal and faithful on $\Gamma_{q}\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$

Hiai 2003:

- When A has infinitely many mutually orthogonal eigenvectors $\Gamma_{q}\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$ is a factor and the type classification is the same as the one obtained by Shlyakhtenko (the $q=0$ case)
- When A has no eigenvectors, $\Gamma_{q}\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$ is a non-injective type III_{1} factor

Hiai 2003:

- When A has infinitely many mutually orthogonal eigenvectors $\Gamma_{q}\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$ is a factor and the type classification is the same as the one obtained by Shlyakhtenko (the $q=0$ case)
- When A has no eigenvectors, $\Gamma_{q}\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$ is a non-injective type III_{1} factor

In the case $\operatorname{dim}\left(\mathcal{H}_{\mathbb{R}}\right)<\infty$, the questions of factoriality and type classification remained open.

Hiai 2003:

- When A has infinitely many mutually orthogonal eigenvectors $\Gamma_{q}\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$ is a factor and the type classification is the same as the one obtained by Shlyakhtenko (the $q=0$ case)
- When A has no eigenvectors, $\Gamma_{q}\left(\mathcal{H}_{\mathbb{R}}, U_{t}\right)^{\prime \prime}$ is a non-injective type III_{1} factor

In the case $\operatorname{dim}\left(\mathcal{H}_{\mathbb{R}}\right)<\infty$, the questions of factoriality and type classification remained open.

Theorem (N. 2013)

There exists $\epsilon>0$ (depending on N and A) such that whenever $|q|<\epsilon$ we have

$$
\begin{aligned}
\Gamma_{q}\left(\mathbb{R}^{N}, U_{t}\right)^{\prime \prime} & \cong \Gamma\left(\mathbb{R}^{N}, U_{t}\right)^{\prime \prime} \text { and } \\
\Gamma_{q}\left(\mathbb{R}^{N}, U_{t}\right) & \cong \Gamma\left(\mathbb{R}^{N}, U_{t}\right)
\end{aligned}
$$

and these isomorphisms are state-preserving.

Proof.

- Fix $q \in(-1,1)$ and denote $M=\Gamma_{q}\left(\mathbb{R}^{N}, U_{t}\right)^{\prime \prime}$ and $X_{j}=s_{q}\left(e_{j}\right)$ for $j=1, \ldots, N$.

Proof.

- Fix $q \in(-1,1)$ and denote $M=\Gamma_{q}\left(\mathbb{R}^{N}, U_{t}\right)^{\prime \prime}$ and $X_{j}=s_{q}\left(e_{j}\right)$ for $j=1, \ldots, N$.
- We show the q-quasi-free state is the free Gibbs state with a potential V_{q} and that $V_{q} \rightarrow V_{0}$ as $|q| \rightarrow 0$.

Proof.

- Fix $q \in(-1,1)$ and denote $M=\Gamma_{q}\left(\mathbb{R}^{N}, U_{t}\right)^{\prime \prime}$ and $X_{j}=s_{q}\left(e_{j}\right)$ for $j=1, \ldots, N$.
- We show the q-quasi-free state is the free Gibbs state with a potential V_{q} and that $V_{q} \rightarrow V_{0}$ as $|q| \rightarrow 0$.
- If we can find for each $j=1, \ldots, N$ a $\xi_{j}^{(q)} \in M$ satisfying

$$
\varphi_{q}\left(\xi_{j}^{(q)} P\right)=\varphi_{q} \otimes \varphi_{q}^{o p}\left(\partial_{j} P\right)
$$

for all $P \in \mathscr{P}(X)$, then φ_{q} is the free Gibbs state with potential

$$
V_{q}=\Sigma\left(\sum_{j, k=1}^{N}\left[\frac{1+A}{2}\right]_{j k} \xi_{k}^{(q)} X_{j}\right)
$$

and

$$
\left\|V_{q}-V_{0}\right\|_{R, \sigma} \leq C(N, A, R) \max _{1 \leq k \leq N}\left\|\xi_{k}^{(q)}-X_{k}\right\|_{R}
$$

Proof.

- Recall that $\xi_{j}^{(0)}=X_{j}$

Proof.

- Recall that $\xi_{j}^{(0)}=X_{j}$
- However, for $q \neq 0$ we have for each $P \in \mathscr{P}(X)$

$$
\varphi_{q}\left(X_{j} P\right)=\varphi_{q} \otimes \varphi^{o p}\left(\partial_{j}(P) \bar{\Xi}_{q}\right)
$$

where $\Xi_{q} \in L^{2}\left(M \otimes M^{o p}, \varphi_{q} \otimes \varphi_{q}^{o p}\right)$ is the element identified with $\sum_{n \geq 0} q^{n} P_{n} \in H S\left(F_{q}(\mathcal{H})\right)$ via the identification

$$
a \otimes b^{\circ} \mapsto\langle b \Omega, \cdot \Omega\rangle_{U, q} a \Omega
$$

Proof.

- Recall that $\xi_{j}^{(0)}=X_{j}$
- However, for $q \neq 0$ we have for each $P \in \mathscr{P}(X)$

$$
\varphi_{q}\left(X_{j} P\right)=\varphi_{q} \otimes \varphi^{o p}\left(\partial_{j}(P) \bar{\Xi}_{q}\right)
$$

where $\Xi_{q} \in L^{2}\left(M \otimes M^{o p}, \varphi_{q} \otimes \varphi_{q}^{o p}\right)$ is the element identified with $\sum_{n \geq 0} q^{n} P_{n} \in H S\left(F_{q}(\mathcal{H})\right)$ via the identification

$$
a \otimes b^{\circ} \mapsto\langle b \Omega, \cdot \Omega\rangle_{U, q} a \Omega
$$

- If we define $\partial_{j}^{(q)}(P):=\partial_{j}(P) \bar{\Xi}_{q}$, then our desired elements are

$$
\xi_{j}^{(q)}=\partial_{j}^{(q) *} \circ\left(\sigma_{-i}^{\varphi_{q}} \otimes \sigma_{i}^{\varphi_{q}}\right)\left(\left[\bar{\Xi}_{q}^{-1}\right]^{*}\right)
$$

estimates similar to those of Dabrowski imply these are well-defined

Proof.

- Adapting a well known identity of Voiculescu to the non-tracial case yields

$$
\begin{aligned}
\xi_{j}^{(q)}= & \left(\sigma_{-i}^{\varphi_{q}} \otimes 1\right)\left(\left[\overline{\underline{I}}_{q}^{-1}\right]^{*}\right) \# X_{j} \\
& -m \circ\left(1 \otimes \varphi_{q} \otimes 1\right) \circ\left(1 \otimes \partial_{j}^{(q)}+\bar{\partial}_{j}^{(q)} \otimes 1\right) \circ\left(\sigma_{-i}^{\varphi_{q}} \otimes 1\right)\left(\left[\bar{\Xi}_{q}^{-1}\right]^{*}\right),
\end{aligned}
$$

where $\left(a \otimes b^{\circ}\right) \# c=a c b$

Proof.

- Adapting a well known identity of Voiculescu to the non-tracial case yields

$$
\begin{aligned}
\xi_{j}^{(q)}= & \left(\sigma_{-i}^{\varphi_{q}} \otimes 1\right)\left(\left[\bar{\Xi}_{q}^{-1}\right]^{*}\right) \# X_{j} \\
& -m \circ\left(1 \otimes \varphi_{q} \otimes 1\right) \circ\left(1 \otimes \partial_{j}^{(q)}+\bar{\partial}_{j}^{(q)} \otimes 1\right) \circ\left(\sigma_{-i}^{\varphi_{q}} \otimes 1\right)\left(\left[\bar{\Xi}_{q}^{-1}\right]^{*}\right),
\end{aligned}
$$

where $\left(a \otimes b^{\circ}\right) \# c=a c b$

- Using methods of Dabrowski one can show

$$
\left(\sigma_{-i}^{\varphi_{q}} \otimes 1\right)\left(\left[\bar{\Xi}_{q}^{-1}\right]^{*}\right)=1 \otimes 1^{\circ}+o(|q|)
$$

- Hence

$$
\xi_{j}^{(q)}=X_{j}+o(|q|)
$$

Guionnet, Jones, and Shlyakhtenko 2010:

- Give an alternate proof to a result of Popa (1995) that every subfactor planar algebra can indeed be realized as the standard invariant of a II_{1} subfactor

Guionnet, Jones, and Shlyakhtenko 2010:

- Give an alternate proof to a result of Popa (1995) that every subfactor planar algebra can indeed be realized as the standard invariant of a II_{1} subfactor
- Given a subfactor planar algebra $\mathcal{P}=\left(P_{n}\right)_{n \in \mathbb{N}}$, create a series of algebras with traces $\left(G r_{k} \mathcal{P}, \wedge_{k}, T r_{k}\right)_{k \geq 0}$ where the multiplication \wedge_{k} and trace $T r_{k}$ are encoded diagrammatically via a planar tangles

Guionnet, Jones, and Shlyakhtenko 2010:

- Give an alternate proof to a result of Popa (1995) that every subfactor planar algebra can indeed be realized as the standard invariant of a II_{1} subfactor
- Given a subfactor planar algebra $\mathcal{P}=\left(P_{n}\right)_{n \in \mathbb{N}}$, create a series of algebras with traces $\left(G r_{k} \mathcal{P}, \wedge_{k}, T r_{k}\right)_{k \geq 0}$ where the multiplication \wedge_{k} and trace $T r_{k}$ are encoded diagrammatically via a planar tangles
- Then there is a series of trace-preserving embeddings $G r_{k} \mathcal{P} \hookrightarrow \mathcal{B}(\mathcal{F}(\mathcal{H}))$ which generate a tower of von Neumann algebras $\left(M_{k}\right)_{k \geq 0}$ whose inclusions recover \mathcal{P} as its standard invariant

Guionnet, Jones, and Shlyakhtenko 2010:

- Give an alternate proof to a result of Popa (1995) that every subfactor planar algebra can indeed be realized as the standard invariant of a II_{1} subfactor
- Given a subfactor planar algebra $\mathcal{P}=\left(P_{n}\right)_{n \in \mathbb{N}}$, create a series of algebras with traces $\left(G r_{k} \mathcal{P}, \wedge_{k}, T r_{k}\right)_{k \geq 0}$ where the multiplication \wedge_{k} and trace $T r_{k}$ are encoded diagrammatically via a planar tangles
- Then there is a series of trace-preserving embeddings $\operatorname{Gr}_{k} \mathcal{P} \hookrightarrow \mathcal{B}(\mathcal{F}(\mathcal{H}))$ which generate a tower of von Neumann algebras $\left(M_{k}\right)_{k \geq 0}$ whose inclusions recover \mathcal{P} as its standard invariant
- M_{0} lies in the centralizer of a $\Gamma\left(\mathbb{R}^{N}, U_{t}\right)^{\prime \prime}$ with respect to the free quasi-free state for some $\left\{U_{t}\right\}_{t \in \mathbb{R}}$

Guionnet, Jones, and Shlyakhtenko 2010:

- Give an alternate proof to a result of Popa (1995) that every subfactor planar algebra can indeed be realized as the standard invariant of a II_{1} subfactor
- Given a subfactor planar algebra $\mathcal{P}=\left(P_{n}\right)_{n \in \mathbb{N}}$, create a series of algebras with traces $\left(G r_{k} \mathcal{P}, \wedge_{k}, T r_{k}\right)_{k \geq 0}$ where the multiplication \wedge_{k} and trace $T r_{k}$ are encoded diagrammatically via a planar tangles
- Then there is a series of trace-preserving embeddings $\operatorname{Gr}_{k} \mathcal{P} \hookrightarrow \mathcal{B}(\mathcal{F}(\mathcal{H}))$ which generate a tower of von Neumann algebras $\left(M_{k}\right)_{k \geq 0}$ whose inclusions recover \mathcal{P} as its standard invariant
- M_{0} lies in the centralizer of a $\Gamma\left(\mathbb{R}^{N}, U_{t}\right)^{\prime \prime}$ with respect to the free quasi-free state for some $\left\{U_{t}\right\}_{t \in \mathbb{R}}$

Theorem 3.1 (N. 2014)

Using non-tracial transport it is possible to perturb the above embeddings without altering the tower of non-commutative probability spaces $\left(M_{k}\right)_{k \geq 0}$. Furthermore, given another state τ_{k} on $G r_{k} \mathcal{P}$ one obtains criterion for when the von Neumann algebra associated to the GNS representation of τ_{k} is isomorphic to M_{k}.

