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Preliminaries Transport

Let ti,..., tn be non-commuting indeterminates and denote & = C (ti,..., tn), the
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Preliminaries Transport

Let ti,..., tn be non-commuting indeterminates and denote & = C (ti,..., tn), the
non-commutative polynomials in t1, ..., ty.

Let Xi,..., Xy be self-adjoint elements in a von Neumann algebra with a state ¢ and
denote X = (Xi,...,Xn). The joint law of Xi, ..., Xy with respect to o, denoted px, is
the linear functional on &2 defined by

ex(P(t, ..., tn)) == @(P(X1,...,Xn)) PeZ
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Preliminaries Transport

Classical Transport

@ Transport from (X, u) to (Z,v) isa map T: X — Z such that T,y =v
o Induces integral-preserving embedding L*°(Z,v) < L*°(X,p) via f — fo T

Brent Nelson (UCLA) November 2, 2014 3/18



Preliminaries Transport

Classical Transport
@ Transport from (X, u) to (Z,v) isa map T: X — Z such that T,y =v
o Induces integral-preserving embedding L*°(Z,v) < L*°(X,p) via f — fo T

v

Free transport

Let X = (Xi,...,Xn) CMand Z = (Z,...,2Zy) C L, where M and L are von Neumann
algebras with faithful states ¢ and v, respectively. Then transport from px to vz is an
N—tuple Y = (Yl, ey YN) C W*()ﬁ7 .. .,XN) C M so that Yy = ’g/}z.

Note that the existence of transport implies Z; — Y] is a state-preserving embedding of
W*(Zl, ey ZN) into W*(Xl, . 7)(/\/).
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ries Free Araki-Woods factors

Shlyakhtenko 1997:

o Given {U:}:cr a strongly continuous one-parameter group of orthogonal
transformations on a real Hilbert space Hr

@ Extend each U; to unitary on Hc = Hg + iHr and let A > 0 be generator: U; = A"
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Preliminaries Free Araki-Woods factors

Shlyakhtenko 1997:

o Given {U:}:cr a strongly continuous one-parameter group of orthogonal
transformations on a real Hilbert space Hr
@ Extend each U; to unitary on Hc = Hg + iHr and let A > 0 be generator: U; = A"

o Examples:
1. U= In € My(R) for all t = A= Iy
2. For A>0

([ cos(tlogA) —sin(tlog))
Ut_( sin(tlogA)  cos(tlog)) )

Al AFATE —iA=2Th
T2l i=2hH) A+t
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Shlyakhtenko 1997:

o Given {U:}:cr a strongly continuous one-parameter group of orthogonal
transformations on a real Hilbert space Hr

@ Extend each U; to unitary on Hc = Hg + iHr and let A > 0 be generator: U; = A"

o Examples:
1. U= In € My(R) for all t = A= Iy
2. For A>0

sin(tlogA)  cos(tlog))

Al AFATE —iA=2Th
T2l i=2hH) A+t

U, = ( cos(tlogA) —sin(tlogX) )

@ Define new inner product:

2
<X7}’>U:<Wxa}’> X,y € He

and let H be the closure of Hc with respect to this inner product
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Shlyakhtenko 1997:

@ Let F(H) be the full Fock space:

F(H) =Ccae @ He"

n=1
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Shlyakhtenko 1997:

@ Let F(H) be the full Fock space:

F(H) =Ccae @ He"

n=1
o Define s(x) = 4(x) + £(x)* € B(F(H)) for x € H where

(XN)AQ - @fh=x@AQ - Qfi UX)A® - @fh=(xA) LR  -Qf
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Shlyakhtenko 1997:

@ Let F(H) be the full Fock space:

F(H) =Ccae @ He"

n=1
o Define s(x) = 4(x) + £(x)" € B(F(H)) for x € H where
(XN)AQ - @fh=x@AQ - Qfi UX)A® - @fh=(xA) LR  -Qf

@ The free Araki-Woods factor is (Mg, Ut)" := W*(s(x): x € Hr) C B(F(H))

The free quasi-free state ¢ is the vector state on B(F(#)) corresponding to Q, is
normal and faithful on I'(Hg, U;)”

F(RY, Iy)" = LFy
o In fact, if G C R} is the closed subgroup generated by the spectrum of A then

I, if G =R
[(Hg, Us)" is a factor of type { Il ifG=X% 0<A<1
I, if G={1}
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Non-tracial transport

We let M =T (R, U;)" and X; = s(e;), where {e1,...,en} C R" is the standard basis.
Thus

M= W*(X1,..., Xn).

Our goal is to construct transport from px (with X = (Xi,..., Xn)).
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Non-tracial transport Free Gibbs states

Let #2(X) denote the non-commutative polynomials in Xi, ..., Xn.
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Non-tracial transport Free Gibbs states

Let #2(X) denote the non-commutative polynomials in Xi, ..., Xn.

Voiculescu's free difference quotients

@ Foreach j =1,..., N the jth free difference quotient 6;: Z(X) — 2 (X) ® P (X)°
is defined by

8j(Xi) = 9j=k1 ®1°
6 (PQ) = 0;(P) - @ + P~ 5;(Q).

0 01(X1 X X1X2) = 1® (XoX1X2)® + XiXo ® X5

Brent Nelson (UCLA) November 2, 2014 7/18
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Let #2(X) denote the non-commutative polynomials in Xi, ..., Xn.

Voiculescu's free difference quotients

@ Foreach j =1,..., N the jth free difference quotient 6;: Z(X) — 2 (X) ® P (X)°
is defined by

8j(Xi) = 9j=k1 ®1°
6 (PQ) = 0;(P) - @ + P~ 5;(Q).

0 01(X1 X X1X2) = 1® (XoX1X2)® + XiXo ® X5
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Non-tracial transport Free Gibbs states

Let #2(X) denote the non-commutative polynomials in Xi, ..., Xn.

Voiculescu's free difference quotients

@ Foreach j =1,..., N the jth free difference quotient 6;: Z(X) — 2 (X) ® P (X)°
is defined by

8j(Xi) = 9j=k1 ®1°
6 (PQ) = 0;(P) - @ + P~ 5;(Q).

0 01(X1 X X1X2) = 1® (XoX1X2)® + XiXo ® X5

We then define the jth o-difference quotient 9;: P(X) — P(X) @ LP(X)% as

0= [l

k=1

Proposition

Let M, Xi,...,Xn, and ¢ be as above. Then for each j =1,..., N and every P € Z(X)

P(XiP) = ¢ ® *(9;P)
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For each j = 1,..., N we define the jth o-cyclic derivative ;: Z(X) — Z(X) by

where we note

o£(X) = > _[A"]iXe = [A*X];.

k=1
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Non-tracial transport Free Gibbs states

For each j =1,..., N we define the jth o-cyclic derivative 9;: 2(X) — ZP(X) by

where we note

o£(X) = > _[A"]iXe = [A*X];.

k=1

A special potential
We first note

Vo |2 © (X 2
De( X Xj) = [1+ALkUﬂ- Xj) + [1+AL}.Xk
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Non-tracial transport Free Gibbs states

For each j =1,..., N we define the jth o-cyclic derivative 9;: 2(X) — ZP(X) by

where we note

A special potential

We first note

D(XeX;) = :7}“ o (X)) + [—
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A special potential

Thus

and consequently if

then its easy to see that
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Non-tracial transport Free Gibbs states

A special potential

Thus

2 2
20009) = |25, %+ [ a) %

and consequently if
N
1 1+ A
V= [%} XX,
Jok=1 Jjk
then its easy to see that

DeVo = Xe {=1,...,N.

v

Let M, Xi,...,Xn, ¢, and VW be as above. Then for each j =1,..., N and every
P e 2(X)

©(2;(Vo)P) = ¢ ® p*(9;P)
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Non-tracial transport Free Gibbs states

Observe that provided we fix A we can make sense of 0; andZ; on Z.

Free Gibbs state

Fix V € &. A linear functional ¥ on & is called a free Gibbs state with potential V if
foreach j=1,...,N and every P € &

W(Zi(VIP) = ¢ @ p™(5;P).
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Brent Nelson (UCLA) November 2, 2014 10 /18



Non-tracial transport Free Gibbs states

Observe that provided we fix A we can make sense of 0; andZ; on Z.

Free Gibbs state

Fix V € &. A linear functional ¥ on & is called a free Gibbs state with potential V if
foreach j=1,...,N and every P € &

W(Zi(VIP) = ¢ @ p™(5;P).

@ @x is the free Gibbs state with potential V;.

@ For R > 0, we consider particular Banach norms || - ||r,» on & such that lleo
can be thought of as convergent power series with radius of convergence at least R.

@ In the definition of a free Gibbs state, V' can be taken from @”'HR’”.

Brent Nelson (UCLA) November 2, 2014 10 /18



Non-tracial transport Free Gibbs states

Observe that provided we fix A we can make sense of 0; andZ; on Z.

Free Gibbs state

Fix V € &. A linear functional ¥ on & is called a free Gibbs state with potential V if
foreach j=1,...,N and every P € &

W(Zi(VIP) = ¢ @ p™(5;P).

@ @x is the free Gibbs state with potential V;.

@ For R > 0, we consider particular Banach norms || - ||r,» on & such that lleo
can be thought of as convergent power series with radius of convergence at least R.

@ In the definition of a free Gibbs state, V' can be taken from @”'HR’”.

o If R>|IXi|,...,||Xn| then P(X) € M whenever P € "7 and
loz(P(XNr,e = [IP(X)||r,o for all k € Z.
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Non-tracial transport Free Gibbs states

Theorem (N. 2013)

o Let M, Xi,...,Xn, ¢, and Vp as above.
o Let Z=(Z,...,2Zn) be elements in a von Neumann algebra L with faithful state ).

@ Assume vz is a free Gibbs state with potential V € ?”'”R"’, with
R= 11X, ..., IXnl|-

There exists ¢ > 0 (depending on N, A, and R) such that if ||V — Vo||r,- < € then
transport from px to vz exists.
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Non-tracial transport Free Gibbs states

Theorem (N. 2013)
o Let M, Xi,...,Xn, ¢, and Vp as above.
o Let Z=(Z,...,2Zn) be elements in a von Neumann algebra L with faithful state ).

@ Assume vz is a free Gibbs state with potential V € ?”'”R"’, with
R> 11X, IXnll-

There exists ¢ > 0 (depending on N, A, and R) such that if ||V — Vo||r,- < € then
transport from px to vz exists.

In particular, the transport elements Yi,..., Yy are convergent power series in
Xi, ..., Xn. By shrinking € if necessary, we can write Xi, ..., Xy as power series in
Y1,..., Yn and therefore Z; — Y gives a state-preserving isomorphism

C*(Zi,...,2Zn) = C*(Xe,. .., Xn)
W*(Zy,...,2Zn) = M.
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Non-tracial transport Proof

Theorem (Guionnet, Maurel-Segala 2006)

Let R > 0. There exists € > 0 (depending on N, A, and R) so that the free Gibbs state
with potential V' is unique whenever ||V — Vo||r,o < €.
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Non-tracial transport Proof

Theorem (Guionnet, Maurel-Segala 2006)

Let R > 0. There exists € > 0 (depending on N, A, and R) so that the free Gibbs state
with potential V' is unique whenever ||V — Vo||r,c < €.

.
Proof of non-tracial transport theorem.

o Suffices to construct Yi,..., Yy € M whose joint law with respect to ¢ is the free
Gibbs state with potential V
O
v
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Theorem (Guionnet, Maurel-Segala 2006)

Let R > 0. There exists € > 0 (depending on N, A, and R) so that the free Gibbs state
with potential V' is unique whenever ||V — Vo||r,c < €.
v
Proof of non-tracial transport theorem.
o Suffices to construct Yi,..., Yy € M whose joint law with respect to ¢ is the free
Gibbs state with potential V
@ Assume each Yj = Xj + %;G with G € (X)H'”R"’ (reasonable since V is close to
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Non-tracial transport Proof

Theorem (Guionnet, Maurel-Segala 2006)

Let R > 0. There exists € > 0 (depending on N, A, and R) so that the free Gibbs state
with potential V' is unique whenever ||V — Vo||r,c < €.

v

Proof of non-tracial transport theorem.
o Suffices to construct Yi,..., Yy € M whose joint law with respect to ¢ is the free
Gibbs state with potential V
@ Assume each Yj = Xj + %;G with G € WH'”R’” (reasonable since V is close to
Vo)
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Non-tracial transport Proof

Theorem (Guionnet, Maurel-Segala 2006)

Let R > 0. There exists € > 0 (depending on N, A, and R) so that the free Gibbs state
with potential V' is unique whenever ||V — Vo||r,c < €.

v

Proof of non-tracial transport theorem.

o Suffices to construct Yi,..., Yy € M whose joint law with respect to ¢ is the free
Gibbs state with potential V

@ Assume each Yj = Xj + %;G with G € WH'”R’” (reasonable since V is close to
Vo)

@ Joint law of Yj's being free Gibbs state with potential V is equivalent to G being
the fixed point of a mapping Fy on the unit ball of W”'HR’“

@ Can show Fy is locally Lipschitz
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Applications g-deformed free Araki-Woods factors

Hiai 2003:
e Given g € (—1,1), the g-Fock space Fo(H) is the completion of CQ & 2, H®"
with respect to

<f1®"'®fmg1® ®gm —6n m Z q H fkvgw(k)>u
k=1

TESy

Note Fo(H) = F(H)
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with respect to

<f1®"'®fmg1® ®gm —6n m Z q H fk7g7r(k)>u
k=1

TES)

Note Fo(H) = F(H)
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Applications g-deformed free Araki-Woods factors

Hiai 2003:
e Given g € (—1,1), the g-Fock space Fo(H) is the completion of CQ & 2, H®"
with respect to

<ﬂ®®fn,g1® ®gm —6n qu H fk7g7r(k)>u
TESy k=1
Note Fo(#H) = F(H)
@ lq(x) for x € H is defined as before but now

L)A® - ®fh=> ¢ ) he Bk - 0f
k=1

o Letting sq(x) = £q(x) + £q(x)*, the g-deformed Araki-Woods algebra is
Fg(Hr, Ur)" = W*(s4(x): x € Hr)

o The g-quasi-free state ¢ is the vector state corresponding to €2, is normal and
faithful on q(Hg, U:)”
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Applications g-deformed free Araki-Woods factors

o When A has infinitely many mutually orthogonal eigenvectors Iq(Hg, U:)” is a
factor and the type classification is the same as the one obtained by Shlyakhtenko
(the g = 0 case)

o When A has no eigenvectors, I'q(Hr, U:)" is a non-injective type II1; factor
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Applications g-deformed free Araki-Woods factors

o When A has infinitely many mutually orthogonal eigenvectors Iq(Hg, U:)” is a
factor and the type classification is the same as the one obtained by Shlyakhtenko
(the g = 0 case)

o When A has no eigenvectors, I'q(Hr, U:)" is a non-injective type II1; factor

In the case dim(Hr) < oo, the questions of factoriality and type classification remained
open.

Theorem (N. 2013)
There exists € > 0 (depending on N and A) such that whenever |g| < € we have

Fo(RY, Ur)" = T(R", U;)" and
FQ(RN7 Uf) = r(RNa Uf)7

and these isomorphisms are state-preserving.
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Applications g-deformed free Araki-Woods factors

o Fix g € (—1,1) and denote M = I',(R", U;)"" and X; = s4(e;) for j=1,..., N.
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Applications g-deformed free Araki-Woods factors

o Fix g € (—1,1) and denote M = I',(R", U;)"" and X; = s4(e;) for j=1,..., N.
@ We show the g-quasi-free state is the free Gibbs state with a potential V, and that
Vg — Vo as |g| — 0.
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Applications g-deformed free Araki-Woods factors

o Fix g € (—1,1) and denote M = I',(R", U;)"" and X; = s4(e;) for j=1,..., N.

@ We show the g-quasi-free state is the free Gibbs state with a potential V, and that
Vg — Vo as |g| — 0.

o If we can find foreach j=1,..., N a .’;’}q) € M satisfying

#al§”P) = g © ¢ (0,P)
for all P € 22(X), then 4 is the free Gibbs state with potential
Y ri+A
o=z (3 [2EA4] eox).
J,k=1 Jk

and

Vo = Vollr.o < C(N, A R) max (1€ — Xillr
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Applications g-deformed free Araki-Woods factors

o Recall that £ = X;
@ However, for g # 0 we have for each P € Z2(X)

©q(XiP) = g ® p*(0;(P)=y),

where =4 € L>(M ® M, pq ® o) is the element identified with
> n>09"Pn € HS(Fg(H)) via the identification

a®b° s (bR, Q) a2
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Applications g-deformed free Araki-Woods factors

o Recall that £ = X;
@ However, for g # 0 we have for each P € Z2(X)

©q(XiP) = g ® p*(0;(P)=y),

where =4 € L>(M ® M, pq ® o) is the element identified with
> n>09"Pn € HS(Fg(H)) via the identification

a® b’ (bQ,- Q) aQ
o If we define 6}‘7)(P) := 9j(P)=4, then our desired elements are

g7 =8 o (e* @ 0f") (IE1") s

=q

estimates similar to those of Dabrowski imply these are well-defined
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Applications g-deformed free Araki-Woods factors

o Adapting a well known identity of Voiculescu to the non-tracial case yields
40 =% 01) (=777 #%
—mo(1®p,®1)0 (1@8}‘”+5}")®1) o(af‘}@l)(“l] )

where (a ® b°)#c = acb
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Applications g-deformed free Araki-Woods factors

@ Adapting a well known identity of Voiculescu to the non-tracial case yields

6 =m0 (E57) #%
—mo(l@g,e1)o (1007 +57e1) o (0% 0 1) (=),

where (a ® b°)#c = acb

@ Using methods of Dabrowski one can show

(%1 ®1) ([ET) =181° +o(lq)
@ Hence

&7 =X+ o(lal)
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Applications Finite depth subfactor planar algebras

Guionnet, Jones, and Shlyakhtenko 2010:

@ Give an alternate proof to a result of Popa (1995) that every subfactor planar
algebra can indeed be realized as the standard invariant of a II; subfactor
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Applications Finite depth subfactor planar algebras

Guionnet, Jones, and Shlyakhtenko 2010:

@ Give an alternate proof to a result of Popa (1995) that every subfactor planar
algebra can indeed be realized as the standard invariant of a II; subfactor

o Given a subfactor planar algebra P = (P,)nen, create a series of algebras with traces
(GrcP, Ak, Tri)k>o0 where the multiplication Ax and trace Try are encoded
diagrammatically via a planar tangles

@ Then there is a series of trace-preserving embeddings GriP — B(F(H)) which
generate a tower of von Neumann algebras (M)k>o0 whose inclusions recover P as
its standard invariant

@ My lies in the centralizer of a I'(RN, U:)" with respect to the free quasi-free state for
some {U;}ier

v

Theorem 3.1 (N. 2014)

Using non-tracial transport it is possible to perturb the above embeddings without
altering the tower of non-commutative probability spaces (M)k>o. Furthermore, given
another state T on Gri’P one obtains criterion for when the von Neumann algebra
associated to the GNS representation of Ty is isomorphic to M.
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