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Preliminaries Transport

Let t1, . . . , tN be non-commuting indeterminates and denote P = C 〈t1, . . . , tN〉, the
non-commutative polynomials in t1, . . . , tN .

Joint laws

Let X1, . . . ,XN be self-adjoint elements in a von Neumann algebra with a state ϕ and
denote X = (X1, . . . ,XN). The joint law of X1, . . . ,XN with respect to ϕ, denoted ϕX , is
the linear functional on P defined by

ϕX (P(t1, . . . , tN)) := ϕ(P(X1, . . . ,XN)) P ∈P
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Preliminaries Transport

Classical Transport

Transport from (X , µ) to (Z , ν) is a map T : X → Z such that T∗µ = ν

Induces integral-preserving embedding L∞(Z , ν) ↪→ L∞(X , µ) via f 7→ f ◦ T

Free transport

Let X = (X1, . . . ,XN) ⊂ M and Z = (Z1, . . . ,ZN) ⊂ L, where M and L are von Neumann
algebras with faithful states ϕ and ψ, respectively. Then transport from ϕX to ψZ is an
N-tuple Y = (Y1, . . . ,YN) ⊂W ∗(X1, . . . ,XN) ⊂ M so that ϕY = ψZ .

Note that the existence of transport implies Zj 7→ Yj is a state-preserving embedding of
W ∗(Z1, . . . ,ZN) into W ∗(X1, . . . ,XN).
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Preliminaries Free Araki-Woods factors

Shlyakhtenko 1997:

Given {Ut}t∈R a strongly continuous one-parameter group of orthogonal
transformations on a real Hilbert space HR

Extend each Ut to unitary on HC = HR + iHR and let A > 0 be generator: Ut = Ait

Examples:
1. Ut = IN ∈ MN(R) for all t ⇒ A = IN
2. For λ > 0

Ut =

(
cos(t log λ) − sin(t log λ)
sin(t log λ) cos(t log λ)

)
A =

1

2

(
λ+ λ−1 −i(λ− λ−1)

i(λ− λ−1) λ+ λ−1

)

Define new inner product:

〈x , y〉U =

〈
2

1 + A−1
x , y

〉
x , y ∈ HC

and let H be the closure of HC with respect to this inner product
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Preliminaries Free Araki-Woods factors

Shlyakhtenko 1997:

Let F(H) be the full Fock space:

F(H) = CΩ⊕
∞⊕
n=1

H⊗n

Define s(x) = `(x) + `(x)∗ ∈ B(F(H)) for x ∈ H where

`(x)f1 ⊗ · · · ⊗ fn = x ⊗ f1 ⊗ · · · ⊗ fn `(x)∗f1 ⊗ · · · ⊗ fn = 〈x , f1〉U f2 ⊗ · · · ⊗ fn

The free Araki-Woods factor is Γ(HR,Ut)
′′ := W ∗(s(x) : x ∈ HR) ⊂ B(F(H))

The free quasi-free state ϕ is the vector state on B(F(H)) corresponding to Ω, is
normal and faithful on Γ(HR,Ut)

′′

Γ(RN , IN)′′ = LFN

In fact, if G ⊂ R×+ is the closed subgroup generated by the spectrum of A then

Γ(HR,Ut)
′′ is a factor of type


III1 if G = R×+
IIIλ if G = λZ, 0 < λ < 1
II1 if G = {1}
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Non-tracial transport

We let M = Γ(RN ,Ut)
′′ and Xj = s(ej), where {e1, . . . , eN} ⊂ RN is the standard basis.

Thus

M = W ∗(X1, . . . ,XN).

Our goal is to construct transport from ϕX (with X = (X1, . . . ,XN)).

Brent Nelson (UCLA) November 2, 2014 6 / 18



Non-tracial transport Free Gibbs states

Let P(X ) denote the non-commutative polynomials in X1, . . . ,XN .

Voiculescu’s free difference quotients

For each j = 1, . . . ,N the jth free difference quotient δj : P(X )→P(X )⊗P(X )op

is defined by

δj(Xk) = δj=k1⊗ 1◦

δj(PQ) = δj(P) · Q + P · δj(Q).

δ1(X1X2X1X2) = 1⊗ (X2X1X2)◦ + X1X2 ⊗ X ◦2

We then define the jth σ-difference quotient ∂j : P(X )→P(X )⊗P(X )op as

∂j :=
N∑

k=1

[
2

1 + A

]
kj

δk .

Proposition

Let M, X1, . . . ,XN , and ϕ be as above. Then for each j = 1, . . . ,N and every P ∈P(X )

ϕ(XjP) = ϕ⊗ ϕop(∂jP)
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Non-tracial transport Free Gibbs states

For each j = 1, . . . ,N we define the jth σ-cyclic derivative Dj : P(X )→P(X ) by

DjP =
N∑

k=1

[
2

1 + A

]
jk

∑
P=AXkB

σϕ−i (B)A,

where we note

σϕz (Xj) =
N∑

k=1

[Aiz ]jkXk = [AizX ]j .

A special potential

We first note

D`(XkXj) =

[
2

1 + A

]
`k

σϕ−i (Xj) +

[
2

1 + A

]
`j

Xk

=

[
2

1 + A−1

]
`k

Xj +

[
2

1 + A

]
`j

Xk

=

[
2

1 + A

]
k`

Xj +

[
2

1 + A

]
`j

Xk
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Non-tracial transport Free Gibbs states

A special potential

Thus

D`(XkXj) =

[
2

1 + A

]
k`

Xj +

[
2

1 + A

]
`j

Xk ,

and consequently if

V0 :=
1

2

N∑
j,k=1

[
1 + A

2

]
jk

XkXj ,

then its easy to see that

D`V0 = X` ` = 1, . . . ,N.

Proposition

Let M, X1, . . . ,XN , ϕ, and V0 be as above. Then for each j = 1, . . . ,N and every
P ∈P(X )

ϕ(Dj(V0)P) = ϕ⊗ ϕop(∂jP)
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Non-tracial transport Free Gibbs states

Observe that provided we fix A we can make sense of ∂j andDj on P.

Free Gibbs state

Fix V ∈P. A linear functional ψ on P is called a free Gibbs state with potential V if
for each j = 1, . . . ,N and every P ∈P

ψ(Dj(V )P) = ψ ⊗ ψop(∂jP).

ϕX is the free Gibbs state with potential V0.

For R > 0, we consider particular Banach norms ‖ · ‖R,σ on P such that P
‖·‖R,σ

can be thought of as convergent power series with radius of convergence at least R.

In the definition of a free Gibbs state, V can be taken from P
‖·‖R,σ .

If R ≥ ‖X1‖, . . . , ‖XN‖ then P(X ) ∈ M whenever P ∈P
‖·‖R,σ and

‖σϕik(P(X ))‖R,σ = ‖P(X )‖R,σ for all k ∈ Z.
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Theorem (N. 2013)
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There exists ε > 0 (depending on N, A, and R) such that if ‖V − V0‖R,σ < ε then
transport from ϕX to ψZ exists.

In particular, the transport elements Y1, . . . ,YN are convergent power series in
X1, . . . ,XN . By shrinking ε if necessary, we can write X1, . . . ,XN as power series in
Y1, . . . ,YN and therefore Zj 7→ Yj gives a state-preserving isomorphism
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W ∗(Z1, . . . ,ZN) ∼= M.
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Non-tracial transport Proof

Theorem (Guionnet, Maurel-Segala 2006)

Let R > 0. There exists ε > 0 (depending on N, A, and R) so that the free Gibbs state
with potential V is unique whenever ‖V − V0‖R,σ < ε.

Proof of non-tracial transport theorem.

Suffices to construct Y1, . . . ,YN ∈ M whose joint law with respect to ϕ is the free
Gibbs state with potential V

Assume each Yj = Xj + DjG with G ∈P(X )
‖·‖R,σ

(reasonable since V is close to
V0)

Joint law of Yj ’s being free Gibbs state with potential V is equivalent to G being

the fixed point of a mapping FV on the unit ball of P(X )
‖·‖R,σ

Can show FV is locally Lipschitz
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Applications q-deformed free Araki-Woods factors

Hiai 2003:

Given q ∈ (−1, 1), the q-Fock space Fq(H) is the completion of CΩ⊕
⊕∞

n=1H
⊗n

with respect to

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉U,q = δn=m

∑
π∈Sn

qi(π)
n∏

k=1

〈
fk , gπ(k)

〉
U

Note F0(H) = F(H)

`q(x) for x ∈ H is defined as before but now

`q(x)∗f1 ⊗ · · · ⊗ fn =
n∑

k=1

qk−1 〈x , fk〉U f1 ⊗ · · · ⊗ f̂k ⊗ · · · ⊗ fn

Letting sq(x) = `q(x) + `q(x)∗, the q-deformed Araki-Woods algebra is
Γq(HR,Ut)

′′ = W ∗(sq(x) : x ∈ HR)

The q-quasi-free state ϕq is the vector state corresponding to Ω, is normal and
faithful on Γq(HR,Ut)

′′
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Applications q-deformed free Araki-Woods factors

Hiai 2003:

When A has infinitely many mutually orthogonal eigenvectors Γq(HR,Ut)
′′ is a

factor and the type classification is the same as the one obtained by Shlyakhtenko
(the q = 0 case)

When A has no eigenvectors, Γq(HR,Ut)
′′ is a non-injective type III1 factor

In the case dim(HR) <∞, the questions of factoriality and type classification remained
open.

Theorem (N. 2013)

There exists ε > 0 (depending on N and A) such that whenever |q| < ε we have

Γq(RN ,Ut)
′′ ∼= Γ(RN ,Ut)

′′ and

Γq(RN ,Ut) ∼= Γ(RN ,Ut),

and these isomorphisms are state-preserving.
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Applications q-deformed free Araki-Woods factors

Proof.

Fix q ∈ (−1, 1) and denote M = Γq(RN ,Ut)
′′ and Xj = sq(ej) for j = 1, . . . ,N.

We show the q-quasi-free state is the free Gibbs state with a potential Vq and that
Vq → V0 as |q| → 0.

If we can find for each j = 1, . . . ,N a ξ
(q)
j ∈ M satisfying

ϕq(ξ
(q)
j P) = ϕq ⊗ ϕop

q (∂jP)

for all P ∈P(X ), then ϕq is the free Gibbs state with potential

Vq = Σ

 N∑
j,k=1

[
1 + A

2

]
jk

ξ
(q)
k Xj

 ,

and

‖Vq − V0‖R,σ ≤ C(N,A,R) max
1≤k≤N

‖ξ(q)k − Xk‖R
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Applications q-deformed free Araki-Woods factors

Proof.

Recall that ξ
(0)
j = Xj

However, for q 6= 0 we have for each P ∈P(X )

ϕq(XjP) = ϕq ⊗ ϕop(∂j(P)Ξq),

where Ξq ∈ L2(M ⊗Mop, ϕq ⊗ ϕop
q ) is the element identified with∑

n≥0 qnPn ∈ HS(Fq(H)) via the identification

a⊗ b◦ 7→ 〈bΩ, · Ω〉U,q aΩ

If we define ∂
(q)
j (P) := ∂j(P)Ξq, then our desired elements are

ξ
(q)
j = ∂

(q)∗
j ◦ (σ

ϕq

−i ⊗ σ
ϕq

i )
(

[Ξ−1
q ]∗

)
,

estimates similar to those of Dabrowski imply these are well-defined
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Applications q-deformed free Araki-Woods factors

Proof.

Adapting a well known identity of Voiculescu to the non-tracial case yields

ξ
(q)
j =(σ

ϕq

−i ⊗ 1)
(

[Ξ−1
q ]∗

)
#Xj

−m ◦ (1⊗ ϕq ⊗ 1) ◦
(

1⊗ ∂(q)
j + ∂̄

(q)
j ⊗ 1

)
◦ (σ

ϕq

−i ⊗ 1)
(

[Ξ−1
q ]∗

)
,

where (a⊗ b◦)#c = acb

Using methods of Dabrowski one can show

(σ
ϕq

−i ⊗ 1)
(

[Ξ−1
q ]∗

)
= 1⊗ 1◦ + o(|q|)

Hence

ξ
(q)
j = Xj + o(|q|)
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Applications Finite depth subfactor planar algebras

Guionnet, Jones, and Shlyakhtenko 2010:

Give an alternate proof to a result of Popa (1995) that every subfactor planar
algebra can indeed be realized as the standard invariant of a II1 subfactor

Given a subfactor planar algebra P = (Pn)n∈N, create a series of algebras with traces
(GrkP,∧k ,Trk)k≥0 where the multiplication ∧k and trace Trk are encoded
diagrammatically via a planar tangles

Then there is a series of trace-preserving embeddings GrkP ↪→ B(F(H)) which
generate a tower of von Neumann algebras (Mk)k≥0 whose inclusions recover P as
its standard invariant

M0 lies in the centralizer of a Γ(RN ,Ut)
′′ with respect to the free quasi-free state for

some {Ut}t∈R

Theorem 3.1 (N. 2014)

Using non-tracial transport it is possible to perturb the above embeddings without
altering the tower of non-commutative probability spaces (Mk)k≥0. Furthermore, given
another state τk on GrkP one obtains criterion for when the von Neumann algebra
associated to the GNS representation of τk is isomorphic to Mk .

Brent Nelson (UCLA) November 2, 2014 18 / 18



Applications Finite depth subfactor planar algebras

Guionnet, Jones, and Shlyakhtenko 2010:

Give an alternate proof to a result of Popa (1995) that every subfactor planar
algebra can indeed be realized as the standard invariant of a II1 subfactor

Given a subfactor planar algebra P = (Pn)n∈N, create a series of algebras with traces
(GrkP,∧k ,Trk)k≥0 where the multiplication ∧k and trace Trk are encoded
diagrammatically via a planar tangles

Then there is a series of trace-preserving embeddings GrkP ↪→ B(F(H)) which
generate a tower of von Neumann algebras (Mk)k≥0 whose inclusions recover P as
its standard invariant

M0 lies in the centralizer of a Γ(RN ,Ut)
′′ with respect to the free quasi-free state for

some {Ut}t∈R

Theorem 3.1 (N. 2014)

Using non-tracial transport it is possible to perturb the above embeddings without
altering the tower of non-commutative probability spaces (Mk)k≥0. Furthermore, given
another state τk on GrkP one obtains criterion for when the von Neumann algebra
associated to the GNS representation of τk is isomorphic to Mk .

Brent Nelson (UCLA) November 2, 2014 18 / 18



Applications Finite depth subfactor planar algebras

Guionnet, Jones, and Shlyakhtenko 2010:

Give an alternate proof to a result of Popa (1995) that every subfactor planar
algebra can indeed be realized as the standard invariant of a II1 subfactor

Given a subfactor planar algebra P = (Pn)n∈N, create a series of algebras with traces
(GrkP,∧k ,Trk)k≥0 where the multiplication ∧k and trace Trk are encoded
diagrammatically via a planar tangles

Then there is a series of trace-preserving embeddings GrkP ↪→ B(F(H)) which
generate a tower of von Neumann algebras (Mk)k≥0 whose inclusions recover P as
its standard invariant

M0 lies in the centralizer of a Γ(RN ,Ut)
′′ with respect to the free quasi-free state for

some {Ut}t∈R

Theorem 3.1 (N. 2014)

Using non-tracial transport it is possible to perturb the above embeddings without
altering the tower of non-commutative probability spaces (Mk)k≥0. Furthermore, given
another state τk on GrkP one obtains criterion for when the von Neumann algebra
associated to the GNS representation of τk is isomorphic to Mk .

Brent Nelson (UCLA) November 2, 2014 18 / 18



Applications Finite depth subfactor planar algebras

Guionnet, Jones, and Shlyakhtenko 2010:

Give an alternate proof to a result of Popa (1995) that every subfactor planar
algebra can indeed be realized as the standard invariant of a II1 subfactor

Given a subfactor planar algebra P = (Pn)n∈N, create a series of algebras with traces
(GrkP,∧k ,Trk)k≥0 where the multiplication ∧k and trace Trk are encoded
diagrammatically via a planar tangles

Then there is a series of trace-preserving embeddings GrkP ↪→ B(F(H)) which
generate a tower of von Neumann algebras (Mk)k≥0 whose inclusions recover P as
its standard invariant

M0 lies in the centralizer of a Γ(RN ,Ut)
′′ with respect to the free quasi-free state for

some {Ut}t∈R

Theorem 3.1 (N. 2014)

Using non-tracial transport it is possible to perturb the above embeddings without
altering the tower of non-commutative probability spaces (Mk)k≥0. Furthermore, given
another state τk on GrkP one obtains criterion for when the von Neumann algebra
associated to the GNS representation of τk is isomorphic to Mk .

Brent Nelson (UCLA) November 2, 2014 18 / 18



Applications Finite depth subfactor planar algebras

Guionnet, Jones, and Shlyakhtenko 2010:

Give an alternate proof to a result of Popa (1995) that every subfactor planar
algebra can indeed be realized as the standard invariant of a II1 subfactor

Given a subfactor planar algebra P = (Pn)n∈N, create a series of algebras with traces
(GrkP,∧k ,Trk)k≥0 where the multiplication ∧k and trace Trk are encoded
diagrammatically via a planar tangles

Then there is a series of trace-preserving embeddings GrkP ↪→ B(F(H)) which
generate a tower of von Neumann algebras (Mk)k≥0 whose inclusions recover P as
its standard invariant

M0 lies in the centralizer of a Γ(RN ,Ut)
′′ with respect to the free quasi-free state for

some {Ut}t∈R

Theorem 3.1 (N. 2014)

Using non-tracial transport it is possible to perturb the above embeddings without
altering the tower of non-commutative probability spaces (Mk)k≥0. Furthermore, given
another state τk on GrkP one obtains criterion for when the von Neumann algebra
associated to the GNS representation of τk is isomorphic to Mk .

Brent Nelson (UCLA) November 2, 2014 18 / 18


	Preliminaries
	Transport
	Free Araki-Woods factors

	Non-tracial transport
	Free Gibbs states
	Proof

	Applications
	q-deformed free Araki-Woods factors
	Finite depth subfactor planar algebras


