Free monotone transport without a trace

Brent Nelson

UCLA

November 2, 2014

・ロト ・ 日 ・ ・ 正 ・ ・

Let t_1, \ldots, t_N be non-commuting indeterminates and denote $\mathscr{P} = \mathbb{C} \langle t_1, \ldots, t_N \rangle$, the non-commutative polynomials in t_1, \ldots, t_N .

・ロト ・四ト ・ヨト ・ヨト

Let t_1, \ldots, t_N be non-commuting indeterminates and denote $\mathscr{P} = \mathbb{C} \langle t_1, \ldots, t_N \rangle$, the non-commutative polynomials in t_1, \ldots, t_N .

Joint laws

Let X_1, \ldots, X_N be self-adjoint elements in a von Neumann algebra with a state φ and denote $X = (X_1, \ldots, X_N)$. The *joint law of* X_1, \ldots, X_N *with respect to* φ , denoted φ_X , is the linear functional on \mathscr{P} defined by

$$\varphi_X(P(t_1,\ldots,t_N)) := \varphi(P(X_1,\ldots,X_N)) \qquad P \in \mathscr{P}$$

< ロ > < 同 > < 回 > <

Classical Transport

• Transport from (X,μ) to (Z,ν) is a map $T:X \to Z$ such that $T_*\mu = \nu$

• Induces integral-preserving embedding $L^{\infty}(Z,\nu) \hookrightarrow L^{\infty}(X,\mu)$ via $f \mapsto f \circ T$

Classical Transport

- Transport from (X,μ) to (Z,ν) is a map $T:X \to Z$ such that $T_*\mu = \nu$
- Induces integral-preserving embedding $L^{\infty}(Z,\nu) \hookrightarrow L^{\infty}(X,\mu)$ via $f \mapsto f \circ T$

Free transport

Let $X = (X_1, \ldots, X_N) \subset M$ and $Z = (Z_1, \ldots, Z_N) \subset L$, where M and L are von Neumann algebras with faithful states φ and ψ , respectively. Then *transport from* φ_X *to* ψ_Z is an N-tuple $Y = (Y_1, \ldots, Y_N) \subset W^*(X_1, \ldots, X_N) \subset M$ so that $\varphi_Y = \psi_Z$.

Note that the existence of transport implies $Z_j \mapsto Y_j$ is a state-preserving embedding of $W^*(Z_1, \ldots, Z_N)$ into $W^*(X_1, \ldots, X_N)$.

・ロト ・四ト ・モト ・モト

- Given $\{U_t\}_{t\in\mathbb{R}}$ a strongly continuous one-parameter group of orthogonal transformations on a real Hilbert space $\mathcal{H}_{\mathbb{R}}$
- Extend each U_t to unitary on $\mathcal{H}_{\mathbb{C}} = \mathcal{H}_{\mathbb{R}} + i\mathcal{H}_{\mathbb{R}}$ and let A > 0 be generator: $U_t = A^{it}$

< ロ > < 同 > < 回 > < 回

- Given $\{U_t\}_{t\in\mathbb{R}}$ a strongly continuous one-parameter group of orthogonal transformations on a real Hilbert space $\mathcal{H}_{\mathbb{R}}$
- Extend each U_t to unitary on $\mathcal{H}_{\mathbb{C}} = \mathcal{H}_{\mathbb{R}} + i\mathcal{H}_{\mathbb{R}}$ and let A > 0 be generator: $U_t = A^{it}$
- Examples:
 - 1. $U_t = I_N \in M_N(\mathbb{R})$ for all $t \Rightarrow A = I_N$

2. For $\lambda > 0$

$$U_{t} = \begin{pmatrix} \cos(t \log \lambda) & -\sin(t \log \lambda) \\ \sin(t \log \lambda) & \cos(t \log \lambda) \end{pmatrix}$$
$$A = \frac{1}{2} \begin{pmatrix} \lambda + \lambda^{-1} & -i(\lambda - \lambda^{-1}) \\ i(\lambda - \lambda^{-1}) & \lambda + \lambda^{-1} \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 >

- Given $\{U_t\}_{t\in\mathbb{R}}$ a strongly continuous one-parameter group of orthogonal transformations on a real Hilbert space $\mathcal{H}_{\mathbb{R}}$
- Extend each U_t to unitary on $\mathcal{H}_{\mathbb{C}} = \mathcal{H}_{\mathbb{R}} + i\mathcal{H}_{\mathbb{R}}$ and let A > 0 be generator: $U_t = A^{it}$
- Examples:
 - 1. $U_t = I_N \in M_N(\mathbb{R})$ for all $t \Rightarrow A = I_N$

2. For $\lambda > 0$

$$U_t = \begin{pmatrix} \cos(t \log \lambda) & -\sin(t \log \lambda) \\ \sin(t \log \lambda) & \cos(t \log \lambda) \end{pmatrix}$$
$$A = \frac{1}{2} \begin{pmatrix} \lambda + \lambda^{-1} & -i(\lambda - \lambda^{-1}) \\ i(\lambda - \lambda^{-1}) & \lambda + \lambda^{-1} \end{pmatrix}$$

• Define new inner product:

$$\langle x, y \rangle_U = \left\langle \frac{2}{1+A^{-1}} x, y \right\rangle \qquad x, y \in \mathcal{H}_{\mathbb{C}}$$

and let ${\mathcal H}$ be the closure of ${\mathcal H}_{\mathbb C}$ with respect to this inner product

<ロ> (日) (日) (日) (日) (日)

• Let $\mathcal{F}(\mathcal{H})$ be the full Fock space:

$$\mathcal{F}(\mathcal{H}) = \mathbb{C}\Omega \oplus igoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}$$

・ロト ・四ト ・ヨト ・ヨト

• Let $\mathcal{F}(\mathcal{H})$ be the full Fock space:

$$\mathcal{F}(\mathcal{H})=\mathbb{C}\Omega\oplus igoplus_{n=1}^{\infty}\mathcal{H}^{\otimes n}$$

• Define $s(x) = \ell(x) + \ell(x)^* \in \mathcal{B}(\mathcal{F}(\mathcal{H}))$ for $x \in \mathcal{H}$ where

 $\ell(x)f_1 \otimes \cdots \otimes f_n = x \otimes f_1 \otimes \cdots \otimes f_n \qquad \ell(x)^* f_1 \otimes \cdots \otimes f_n = \langle x, f_1 \rangle_U f_2 \otimes \cdots \otimes f_n$

<ロ> (日) (日) (日) (日) (日)

• Let $\mathcal{F}(\mathcal{H})$ be the full Fock space:

$$\mathcal{F}(\mathcal{H})=\mathbb{C}\Omega\oplus igoplus_{n=1}^{\infty}\mathcal{H}^{\otimes n}$$

- Define $s(x) = \ell(x) + \ell(x)^* \in \mathcal{B}(\mathcal{F}(\mathcal{H}))$ for $x \in \mathcal{H}$ where $\ell(x)f_1 \otimes \cdots \otimes f_n = x \otimes f_1 \otimes \cdots \otimes f_n \qquad \ell(x)^* f_1 \otimes \cdots \otimes f_n = \langle x, f_1 \rangle_U f_2 \otimes \cdots \otimes f_n$
- The free Araki-Woods factor is $\Gamma(\mathcal{H}_{\mathbb{R}}, U_t)'' := W^*(s(x) \colon x \in \mathcal{H}_{\mathbb{R}}) \subset \mathcal{B}(\mathcal{F}(\mathcal{H}))$
- The free quasi-free state φ is the vector state on B(F(H)) corresponding to Ω, is normal and faithful on Γ(H_R, U_t)"

・ロッ ・ 一 ・ ・ ・ ・

• Let $\mathcal{F}(\mathcal{H})$ be the full Fock space:

$$\mathcal{F}(\mathcal{H})=\mathbb{C}\Omega\oplus igoplus_{n=1}^{\infty}\mathcal{H}^{\otimes n}$$

- Define $s(x) = \ell(x) + \ell(x)^* \in \mathcal{B}(\mathcal{F}(\mathcal{H}))$ for $x \in \mathcal{H}$ where $\ell(x)f_1 \otimes \cdots \otimes f_n = x \otimes f_1 \otimes \cdots \otimes f_n \qquad \ell(x)^* f_1 \otimes \cdots \otimes f_n = \langle x, f_1 \rangle_U f_2 \otimes \cdots \otimes f_n$
- The free Araki-Woods factor is $\Gamma(\mathcal{H}_{\mathbb{R}}, U_t)'' := W^*(s(x) \colon x \in \mathcal{H}_{\mathbb{R}}) \subset \mathcal{B}(\mathcal{F}(\mathcal{H}))$
- The free quasi-free state φ is the vector state on B(F(H)) corresponding to Ω, is normal and faithful on Γ(H_R, U_t)"
- $\Gamma(\mathbb{R}^N, I_N)'' = L\mathbb{F}_N$

< ロ > < 同 > < 回 > < 回 >

• Let $\mathcal{F}(\mathcal{H})$ be the full Fock space:

$$\mathcal{F}(\mathcal{H})=\mathbb{C}\Omega\oplus igoplus_{n=1}^{\infty}\mathcal{H}^{\otimes n}$$

- Define $s(x) = \ell(x) + \ell(x)^* \in \mathcal{B}(\mathcal{F}(\mathcal{H}))$ for $x \in \mathcal{H}$ where $\ell(x)f_1 \otimes \cdots \otimes f_n = x \otimes f_1 \otimes \cdots \otimes f_n \qquad \ell(x)^* f_1 \otimes \cdots \otimes f_n = \langle x, f_1 \rangle_U f_2 \otimes \cdots \otimes f_n$
- The free Araki-Woods factor is $\Gamma(\mathcal{H}_{\mathbb{R}}, U_t)'' := W^*(s(x) \colon x \in \mathcal{H}_{\mathbb{R}}) \subset \mathcal{B}(\mathcal{F}(\mathcal{H}))$
- The free quasi-free state φ is the vector state on B(F(H)) corresponding to Ω, is normal and faithful on Γ(H_R, U_t)"
- $\Gamma(\mathbb{R}^N, I_N)'' = L\mathbb{F}_N$
- In fact, if $G \subset \mathbb{R}_+^{\times}$ is the closed subgroup generated by the spectrum of A then

$$\Gamma(\mathcal{H}_{\mathbb{R}}, U_t)'' \text{ is a factor of type } \begin{cases} III_1 & \text{if } G = \mathbb{R}_+^{\times} \\ III_{\lambda} & \text{if } G = \lambda^{\mathbb{Z}}, \ 0 < \lambda < 1 \\ II_1 & \text{if } G = \{1\} \end{cases}$$

(日)

We let $M = \Gamma(\mathbb{R}^N, U_t)''$ and $X_j = s(e_j)$, where $\{e_1, \ldots, e_N\} \subset \mathbb{R}^N$ is the standard basis. Thus

$$M = W^*(X_1,\ldots,X_N).$$

Our goal is to construct transport from φ_X (with $X = (X_1, \ldots, X_N)$).

(日)

Let $\mathscr{P}(X)$ denote the non-commutative polynomials in X_1, \ldots, X_N .

・ロト ・部ト ・ヨト ・ヨト 三日

Let $\mathscr{P}(X)$ denote the non-commutative polynomials in X_1, \ldots, X_N .

Voiculescu's free difference quotients

• For each j = 1, ..., N the *j*th free difference quotient $\delta_j : \mathscr{P}(X) \to \mathscr{P}(X) \otimes \mathscr{P}(X)^{op}$ is defined by

$$\delta_j(X_k) = \delta_{j=k} 1 \otimes 1^\circ$$

 $\delta_j(PQ) = \delta_j(P) \cdot Q + P \cdot \delta_j(Q).$

• $\delta_1(X_1X_2X_1X_2) = 1 \otimes (X_2X_1X_2)^\circ + X_1X_2 \otimes X_2^\circ$

Let $\mathscr{P}(X)$ denote the non-commutative polynomials in X_1, \ldots, X_N .

Voiculescu's free difference quotients

For each j = 1,..., N the jth free difference quotient δ_j: 𝒫(X) → 𝒫(X) ⊗ 𝒫(X)^{op} is defined by

$$\delta_j(X_k) = \delta_{j=k} 1 \otimes 1^\circ$$

 $\delta_j(PQ) = \delta_j(P) \cdot Q + P \cdot \delta_j(Q).$

• $\delta_1(X_1X_2X_1X_2) = 1 \otimes (X_2X_1X_2)^\circ + X_1X_2 \otimes X_2^\circ$

We then define the *jth* σ *-difference quotient* $\partial_j \colon \mathscr{P}(X) \to \mathscr{P}(X) \otimes \mathscr{P}(X)^{op}$ as

$$\partial_j := \sum_{k=1}^N \left[\frac{2}{1+A} \right]_{kj} \delta_k.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\mathscr{P}(X)$ denote the non-commutative polynomials in X_1,\ldots,X_N .

Voiculescu's free difference quotients

For each j = 1,..., N the jth free difference quotient δ_j: 𝒫(X) → 𝒫(X) ⊗ 𝒫(X)^{op} is defined by

$$\delta_j(X_k) = \delta_{j=k} 1 \otimes 1^\circ$$

 $\delta_j(PQ) = \delta_j(P) \cdot Q + P \cdot \delta_j(Q).$

• $\delta_1(X_1X_2X_1X_2) = 1 \otimes (X_2X_1X_2)^\circ + X_1X_2 \otimes X_2^\circ$

We then define the *jth* σ -difference quotient $\partial_j \colon \mathscr{P}(X) \to \mathscr{P}(X) \otimes \mathscr{P}(X)^{op}$ as

$$\partial_j := \sum_{k=1}^N \left[\frac{2}{1+A} \right]_{kj} \delta_k.$$

Proposition

Let M, X_1, \ldots, X_N , and φ be as above. Then for each $j = 1, \ldots, N$ and every $P \in \mathscr{P}(X)$

$$\varphi(X_j P) = \varphi \otimes \varphi^{op}(\partial_j P)$$

<ロ> (日) (日) (日) (日) (日)

For each j = 1, ..., N we define the *jth* σ *-cyclic derivative* $\mathscr{D}_j \colon \mathscr{P}(X) \to \mathscr{P}(X)$ by

$$\mathscr{D}_{j}P = \sum_{k=1}^{N} \left[\frac{2}{1+A} \right]_{jk} \sum_{P=AX_{k}B} \sigma_{-i}^{\varphi}(B)A,$$

where we note

$$\sigma_z^{\varphi}(X_j) = \sum_{k=1}^N [A^{iz}]_{jk} X_k = [A^{iz}X]_j.$$

< □ > < □ > < □ > < □ > < □ > < □ >

For each $j = 1, \dots, N$ we define the *jth* σ *-cyclic derivative* $\mathscr{D}_j \colon \mathscr{P}(X) \to \mathscr{P}(X)$ by

$$\mathscr{D}_{j}P = \sum_{k=1}^{N} \left[\frac{2}{1+A} \right]_{jk} \sum_{P=AX_{k}B} \sigma_{-i}^{\varphi}(B)A,$$

where we note

$$\sigma_z^{\varphi}(X_j) = \sum_{k=1}^N [A^{iz}]_{jk} X_k = [A^{iz}X]_j.$$

A special potential

We first note

$$\mathscr{D}_{\ell}(X_k X_j) = \left[rac{2}{1+A}
ight]_{\ell k} \sigma^{\varphi}_{-i}(X_j) + \left[rac{2}{1+A}
ight]_{\ell j} X_k$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日

For each $j = 1, \dots, N$ we define the *jth* σ *-cyclic derivative* $\mathscr{D}_j \colon \mathscr{P}(X) \to \mathscr{P}(X)$ by

$$\mathscr{D}_{j}P = \sum_{k=1}^{N} \left[\frac{2}{1+A} \right]_{jk} \sum_{P=AX_{k}B} \sigma_{-i}^{\varphi}(B)A,$$

where we note

$$\sigma_z^{\varphi}(X_j) = \sum_{k=1}^N [A^{iz}]_{jk} X_k = [A^{iz}X]_j.$$

A special potential

We first note

$$egin{aligned} \mathscr{D}_\ell(X_kX_j) &= \left[rac{2}{1+A}
ight]_{\ell k} \sigma^arphi_{-i}(X_j) + \left[rac{2}{1+A}
ight]_{\ell j} X_k \ &= \left[rac{2}{1+A^{-1}}
ight]_{\ell k} X_j + \left[rac{2}{1+A}
ight]_{\ell j} X_k \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ◆□>

For each $j = 1, \dots, N$ we define the *jth* σ *-cyclic derivative* $\mathscr{D}_j \colon \mathscr{P}(X) \to \mathscr{P}(X)$ by

$$\mathscr{D}_{j}P = \sum_{k=1}^{N} \left[\frac{2}{1+A} \right]_{jk} \sum_{P=AX_{k}B} \sigma_{-i}^{\varphi}(B)A,$$

where we note

$$\sigma_z^{\varphi}(X_j) = \sum_{k=1}^N [A^{iz}]_{jk} X_k = [A^{iz}X]_j.$$

A special potential

We first note

$$egin{aligned} \mathscr{D}_\ell(X_kX_j) &= \left[rac{2}{1+A}
ight]_{\ell k} \sigma^{arphi}_{-i}(X_j) + \left[rac{2}{1+A}
ight]_{\ell j} X_k \ &= \left[rac{2}{1+A^{-1}}
ight]_{\ell k} X_j + \left[rac{2}{1+A}
ight]_{\ell j} X_k \ &= \left[rac{2}{1+A}
ight]_{k \ell} X_j + \left[rac{2}{1+A}
ight]_{\ell j} X_k \end{aligned}$$

э

・ロト ・ 日 ・ ・ 目 ・ ・

A special potential

Thus

$$\mathscr{D}_{\ell}(X_k X_j) = \left[\frac{2}{1+A}\right]_{k\ell} X_j + \left[\frac{2}{1+A}\right]_{\ell j} X_{kj}$$

and consequently if

$$V_0 := rac{1}{2} \sum_{j,k=1}^N \left[rac{1+A}{2}
ight]_{jk} X_k X_j,$$

then its easy to see that

$$\mathscr{D}_{\ell}V_0 = X_{\ell} \qquad \ell = 1, \ldots, N.$$

・ロト ・四ト ・ヨト ・ヨト

A special potential

Thus

$$\mathscr{D}_{\ell}(X_k X_j) = \left[\frac{2}{1+A}\right]_{k\ell} X_j + \left[\frac{2}{1+A}\right]_{\ell j} X_k,$$

and consequently if

$$V_0:=rac{1}{2}\sum_{j,k=1}^N\left[rac{1+A}{2}
ight]_{jk}X_kX_j,$$

then its easy to see that

$$\mathscr{D}_{\ell} V_0 = X_{\ell} \qquad \ell = 1, \ldots, N.$$

Proposition

Let $M, X_1, \ldots, X_N, \varphi$, and V_0 be as above. Then for each $j = 1, \ldots, N$ and every $P \in \mathscr{P}(X)$

$$\varphi(\mathscr{D}_{j}(V_{0})P) = \varphi \otimes \varphi^{op}(\partial_{j}P)$$

・ロト ・四ト ・ヨト ・ヨト

Observe that provided we fix A we can make sense of ∂_i and \mathcal{D}_j on \mathcal{P} .

Free Gibbs state

Fix $V \in \mathscr{P}$. A linear functional ψ on \mathscr{P} is called a *free Gibbs state with potential* V if for each j = 1, ..., N and every $P \in \mathscr{P}$

 $\psi(\mathscr{D}_j(V)P) = \psi \otimes \psi^{op}(\partial_j P).$

<ロト < 同ト < ヨト < ヨト

Observe that provided we fix A we can make sense of ∂_i and \mathcal{D}_j on \mathcal{P} .

Free Gibbs state

Fix $V \in \mathscr{P}$. A linear functional ψ on \mathscr{P} is called a *free Gibbs state with potential* V if for each j = 1, ..., N and every $P \in \mathscr{P}$

 $\psi(\mathscr{D}_j(V)P) = \psi \otimes \psi^{op}(\partial_j P).$

• φ_X is the free Gibbs state with potential V_0 .

<ロト < 同ト < ヨト < ヨト

Observe that provided we fix A we can make sense of ∂_i and \mathcal{D}_i on \mathcal{P} .

Free Gibbs state

Fix $V \in \mathscr{P}$. A linear functional ψ on \mathscr{P} is called a *free Gibbs state with potential* V if for each j = 1, ..., N and every $P \in \mathscr{P}$

$$\psi(\mathscr{D}_j(V)P) = \psi \otimes \psi^{op}(\partial_j P).$$

- φ_X is the free Gibbs state with potential V_0 .
- For R > 0, we consider particular Banach norms || · ||_{R,σ} on 𝒫 such that 𝒫^{||·||_{R,σ}} can be thought of as convergent power series with radius of convergence at least R.

(日)

Observe that provided we fix A we can make sense of ∂_i and \mathcal{D}_i on \mathcal{P} .

Free Gibbs state

Fix $V \in \mathscr{P}$. A linear functional ψ on \mathscr{P} is called a *free Gibbs state with potential* V if for each j = 1, ..., N and every $P \in \mathscr{P}$

$$\psi(\mathscr{D}_j(V)P) = \psi \otimes \psi^{op}(\partial_j P).$$

- φ_X is the free Gibbs state with potential V_0 .
- For R > 0, we consider particular Banach norms || · ||_{R,σ} on 𝒫 such that 𝒫^{||·||_{R,σ}} can be thought of as convergent power series with radius of convergence at least R.
- In the definition of a free Gibbs state, V can be taken from $\overline{\mathscr{P}}^{\|\cdot\|_{\mathcal{R},\sigma}}$.

< ロ > < 同 > < 回 > < 回 >

Observe that provided we fix A we can make sense of ∂_i and \mathcal{D}_i on \mathcal{P} .

Free Gibbs state

Fix $V \in \mathscr{P}$. A linear functional ψ on \mathscr{P} is called a *free Gibbs state with potential* V if for each j = 1, ..., N and every $P \in \mathscr{P}$

$$\psi(\mathscr{D}_j(V)P) = \psi \otimes \psi^{op}(\partial_j P).$$

- φ_X is the free Gibbs state with potential V_0 .
- For R > 0, we consider particular Banach norms || · ||_{R,σ} on 𝒫 such that 𝒫^{||·||_{R,σ}} can be thought of as convergent power series with radius of convergence at least R.
- In the definition of a free Gibbs state, V can be taken from $\overline{\mathscr{P}}^{\|\cdot\|_{R,\sigma}}$.
- If $R \ge ||X_1||, \dots, ||X_N||$ then $P(X) \in M$ whenever $P \in \overline{\mathscr{P}}^{\|\cdot\|_{R,\sigma}}$ and $\|\sigma_{ik}^{\varphi}(P(X))\|_{R,\sigma} = \|P(X)\|_{R,\sigma}$ for all $k \in \mathbb{Z}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (N. 2013)

- Let $M, X_1, \ldots, X_N, \varphi$, and V_0 as above.
- Let $Z = (Z_1, \ldots, Z_N)$ be elements in a von Neumann algebra L with faithful state ψ .
- Assume ψ_Z is a free Gibbs state with potential $V \in \overline{\mathscr{P}}^{\|\cdot\|_{R,\sigma}}$, with $R \ge \|X_1\|, \ldots, \|X_N\|$.

There exists $\epsilon > 0$ (depending on *N*, *A*, and *R*) such that if $||V - V_0||_{R,\sigma} < \epsilon$ then transport from φ_X to ψ_Z exists.

<ロ> (日) (日) (日) (日) (日)

Theorem (N. 2013)

- Let $M, X_1, \ldots, X_N, \varphi$, and V_0 as above.
- Let $Z = (Z_1, \ldots, Z_N)$ be elements in a von Neumann algebra L with faithful state ψ .
- Assume ψ_Z is a free Gibbs state with potential $V \in \overline{\mathscr{P}}^{\|\cdot\|_{R,\sigma}}$, with $R \ge \|X_1\|, \ldots, \|X_N\|$.

There exists $\epsilon > 0$ (depending on *N*, *A*, and *R*) such that if $||V - V_0||_{R,\sigma} < \epsilon$ then transport from φ_X to ψ_Z exists.

In particular, the transport elements Y_1, \ldots, Y_N are convergent power series in X_1, \ldots, X_N . By shrinking ϵ if necessary, we can write X_1, \ldots, X_N as power series in Y_1, \ldots, Y_N and therefore $Z_j \mapsto Y_j$ gives a state-preserving isomorphism

$$C^*(Z_1,\ldots,Z_N)\cong C^*(X_1,\ldots,X_N)$$
$$W^*(Z_1,\ldots,Z_N)\cong M.$$

< ロ > < 同 > < 回 > < 回 >

Let R > 0. There exists $\epsilon > 0$ (depending on N, A, and R) so that the free Gibbs state with potential V is unique whenever $||V - V_0||_{R,\sigma} < \epsilon$.

<ロト < 同ト < ヨト < ヨト

Let R > 0. There exists $\epsilon > 0$ (depending on N, A, and R) so that the free Gibbs state with potential V is unique whenever $||V - V_0||_{R,\sigma} < \epsilon$.

Proof of non-tracial transport theorem.

• Suffices to construct $Y_1, \ldots, Y_N \in M$ whose joint law with respect to φ is the free Gibbs state with potential V

< ロ > < 同 > < 回 > < 回 >

Let R > 0. There exists $\epsilon > 0$ (depending on N, A, and R) so that the free Gibbs state with potential V is unique whenever $||V - V_0||_{R,\sigma} < \epsilon$.

Proof of non-tracial transport theorem.

- Suffices to construct $Y_1, \ldots, Y_N \in M$ whose joint law with respect to φ is the free Gibbs state with potential V
- Assume each $Y_j = X_j + \mathscr{D}_j G$ with $G \in \overline{\mathscr{P}(X)}^{\|\cdot\|_{\mathcal{R},\sigma}}$ (reasonable since V is close to V_0)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let R > 0. There exists $\epsilon > 0$ (depending on N, A, and R) so that the free Gibbs state with potential V is unique whenever $||V - V_0||_{R,\sigma} < \epsilon$.

Proof of non-tracial transport theorem.

- Suffices to construct $Y_1, \ldots, Y_N \in M$ whose joint law with respect to φ is the free Gibbs state with potential V
- Assume each $Y_j = X_j + \mathscr{D}_j G$ with $G \in \overline{\mathscr{P}(X)}^{\|\cdot\|_{R,\sigma}}$ (reasonable since V is close to V_0)
- Joint law of Y_j 's being free Gibbs state with potential V is equivalent to G being the fixed point of a mapping F_V on the unit ball of $\overline{\mathscr{P}(X)}^{\|\cdot\|_{R,\sigma}}$

(日) (同) (三) (三) (三)

Let R > 0. There exists $\epsilon > 0$ (depending on N, A, and R) so that the free Gibbs state with potential V is unique whenever $||V - V_0||_{R,\sigma} < \epsilon$.

Proof of non-tracial transport theorem.

- Suffices to construct $Y_1, \ldots, Y_N \in M$ whose joint law with respect to φ is the free Gibbs state with potential V
- Assume each $Y_j = X_j + \mathscr{D}_j G$ with $G \in \overline{\mathscr{P}(X)}^{\|\cdot\|_{R,\sigma}}$ (reasonable since V is close to V_0)
- Joint law of Y_j 's being free Gibbs state with potential V is equivalent to G being the fixed point of a mapping F_V on the unit ball of $\overline{\mathscr{P}(X)}^{\|\cdot\|_{R,\sigma}}$
- Can show F_V is locally Lipschitz

< ロ > < 同 > < 回 > < 回 > < □ > <

• Given $q \in (-1, 1)$, the *q*-Fock space $\mathcal{F}_q(\mathcal{H})$ is the completion of $\mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}$ with respect to

$$\langle f_1 \otimes \cdots \otimes f_n, g_1 \otimes \cdots \otimes g_m \rangle_{U,q} = \delta_{n=m} \sum_{\pi \in S_n} q^{i(\pi)} \prod_{k=1}^n \langle f_k, g_{\pi(k)} \rangle_U$$

Note $\mathcal{F}_0(\mathcal{H}) = \mathcal{F}(\mathcal{H})$

< □ > < □ > < □ > < □ > < □ >

• Given $q \in (-1, 1)$, the *q*-Fock space $\mathcal{F}_q(\mathcal{H})$ is the completion of $\mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}$ with respect to

$$\langle f_1 \otimes \cdots \otimes f_n, g_1 \otimes \cdots \otimes g_m \rangle_{U,q} = \delta_{n=m} \sum_{\pi \in S_n} q^{i(\pi)} \prod_{k=1}^n \langle f_k, g_{\pi(k)} \rangle_U$$

Note $\mathcal{F}_0(\mathcal{H}) = \mathcal{F}(\mathcal{H})$

• $\ell_q(x)$ for $x \in \mathcal{H}$ is defined as before but now

$$\ell_q(x)^* f_1 \otimes \cdots \otimes f_n = \sum_{k=1}^n q^{k-1} \langle x, f_k \rangle_U f_1 \otimes \cdots \otimes \hat{f}_k \otimes \cdots \otimes f_n$$

(日)

Given q ∈ (-1,1), the q-Fock space F_q(H) is the completion of CΩ ⊕ ⊕[∞]_{n=1} H^{⊗n} with respect to

$$\langle f_1 \otimes \cdots \otimes f_n, g_1 \otimes \cdots \otimes g_m \rangle_{U,q} = \delta_{n=m} \sum_{\pi \in S_n} q^{i(\pi)} \prod_{k=1}^n \langle f_k, g_{\pi(k)} \rangle_U$$

Note $\mathcal{F}_0(\mathcal{H}) = \mathcal{F}(\mathcal{H})$

• $\ell_q(x)$ for $x \in \mathcal{H}$ is defined as before but now

$$\ell_q(x)^* f_1 \otimes \cdots \otimes f_n = \sum_{k=1}^n q^{k-1} \langle x, f_k \rangle_U f_1 \otimes \cdots \otimes \hat{f}_k \otimes \cdots \otimes f_n$$

- Letting $s_q(x) = \ell_q(x) + \ell_q(x)^*$, the *q*-deformed Araki-Woods algebra is $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)'' = W^*(s_q(x): x \in \mathcal{H}_{\mathbb{R}})$
- The *q*-quasi-free state φ_q is the vector state corresponding to Ω , is normal and faithful on $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$

< ロ > < 同 > < 回 > < 回 > < □ > <

- When A has infinitely many mutually orthogonal eigenvectors $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ is a factor and the type classification is the same as the one obtained by Shlyakhtenko (the q = 0 case)
- When A has no eigenvectors, $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ is a non-injective type III₁ factor

(日)

- When A has infinitely many mutually orthogonal eigenvectors $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ is a factor and the type classification is the same as the one obtained by Shlyakhtenko (the q = 0 case)
- When A has no eigenvectors, $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ is a non-injective type III₁ factor

In the case $\text{dim}(\mathcal{H}_\mathbb{R})<\infty,$ the questions of factoriality and type classification remained open.

イロト イポト イヨト イヨ

- When A has infinitely many mutually orthogonal eigenvectors $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ is a factor and the type classification is the same as the one obtained by Shlyakhtenko (the q = 0 case)
- When A has no eigenvectors, $\Gamma_q(\mathcal{H}_{\mathbb{R}}, U_t)''$ is a non-injective type III₁ factor

In the case $\text{dim}(\mathcal{H}_\mathbb{R})<\infty,$ the questions of factoriality and type classification remained open.

Theorem (N. 2013)

There exists $\epsilon > 0$ (depending on N and A) such that whenever $|q| < \epsilon$ we have

$$\Gamma_q(\mathbb{R}^N, U_t)'' \cong \Gamma(\mathbb{R}^N, U_t)'' \text{ and } \\ \Gamma_q(\mathbb{R}^N, U_t) \cong \Gamma(\mathbb{R}^N, U_t),$$

and these isomorphisms are state-preserving.

< ロ > < 同 > < 回 > < 回 >

• Fix $q \in (-1,1)$ and denote $M = \Gamma_q(\mathbb{R}^N, U_t)''$ and $X_j = s_q(e_j)$ for $j = 1, \dots, N$.

- Fix $q \in (-1,1)$ and denote $M = \Gamma_q(\mathbb{R}^N, U_t)''$ and $X_j = s_q(e_j)$ for $j = 1, \dots, N$.
- We show the q-quasi-free state is the free Gibbs state with a potential V_q and that $V_q \to V_0$ as $|q| \to 0$.

(日)

- Fix $q \in (-1,1)$ and denote $M = \Gamma_q(\mathbb{R}^N, U_t)''$ and $X_j = s_q(e_j)$ for $j = 1, \dots, N$.
- We show the q-quasi-free state is the free Gibbs state with a potential V_q and that $V_q \to V_0$ as $|q| \to 0$.
- If we can find for each $j = 1, \ldots, N$ a $\xi_j^{(q)} \in M$ satisfying

$$arphi_q(\xi_j^{(q)}P) = arphi_q \otimes arphi_q^{op}(\partial_j P)$$

for all $P \in \mathscr{P}(X)$, then φ_q is the free Gibbs state with potential

$$V_q = \Sigma \left(\sum_{j,k=1}^N \left[rac{1+A}{2}
ight]_{jk} \xi_k^{(q)} X_j
ight),$$

and

$$\|V_q - V_0\|_{R,\sigma} \le C(N,A,R) \max_{1 \le k \le N} \|\xi_k^{(q)} - X_k\|_R$$

(日)

• Recall that
$$\xi_i^{(0)} = X_j$$

- Recall that $\xi_j^{(0)} = X_j$
- However, for $q \neq 0$ we have for each $P \in \mathscr{P}(X)$

$$\varphi_q(X_j P) = \varphi_q \otimes \varphi^{op}(\partial_j(P) \Xi_q),$$

where $\Xi_q \in L^2(M \otimes M^{op}, \varphi_q \otimes \varphi_q^{op})$ is the element identified with $\sum_{n>0} q^n P_n \in HS(F_q(\mathcal{H}))$ via the identification

 $a \otimes b^{\circ} \mapsto \langle b\Omega, \cdot \Omega \rangle_{U,q} a\Omega$

< ロ > < 同 > < 回 > < 回 >

- Recall that $\xi_j^{(0)} = X_j$
- However, for $q \neq 0$ we have for each $P \in \mathscr{P}(X)$

$$\varphi_q(X_jP) = \varphi_q \otimes \varphi^{op}(\partial_j(P)\Xi_q),$$

where $\Xi_q \in L^2(M \otimes M^{op}, \varphi_q \otimes \varphi_q^{op})$ is the element identified with $\sum_{n>0} q^n P_n \in HS(F_q(\mathcal{H}))$ via the identification

 $a \otimes b^{\circ} \mapsto \langle b\Omega, \cdot \Omega \rangle_{U,a} a\Omega$

• If we define $\partial_j^{(q)}(P) := \partial_j(P) \Xi_q$, then our desired elements are

$$\xi_j^{(q)} = \partial_j^{(q)*} \circ (\sigma_{-i}^{\varphi_q} \otimes \sigma_i^{\varphi_q}) \left(\left[\Xi_q^{-1} \right]^* \right),$$

estimates similar to those of Dabrowski imply these are well-defined

• Adapting a well known identity of Voiculescu to the non-tracial case yields

$$\begin{split} \xi_j^{(q)} = & \left(\sigma_{-i}^{\varphi_q} \otimes 1\right) \left(\left[\Xi_q^{-1}\right]^* \right) \# X_j \\ & - m \circ \left(1 \otimes \varphi_q \otimes 1\right) \circ \left(1 \otimes \partial_j^{(q)} + \bar{\partial}_j^{(q)} \otimes 1 \right) \circ \left(\sigma_{-i}^{\varphi_q} \otimes 1\right) \left(\left[\Xi_q^{-1}\right]^* \right), \end{split}$$

where $(a \otimes b^{\circ}) \# c = acb$

・ロト ・日 ・ ・ ヨ ・ ・

• Adapting a well known identity of Voiculescu to the non-tracial case yields

$$\begin{split} \xi_{j}^{(q)} = & (\sigma_{-i}^{\varphi_{q}} \otimes 1) \left([\Xi_{q}^{-1}]^{*} \right) \# X_{j} \\ & - m \circ (1 \otimes \varphi_{q} \otimes 1) \circ \left(1 \otimes \partial_{j}^{(q)} + \bar{\partial}_{j}^{(q)} \otimes 1 \right) \circ (\sigma_{-i}^{\varphi_{q}} \otimes 1) \left([\Xi_{q}^{-1}]^{*} \right) , \end{split}$$

where $(a \otimes b^\circ) \# c = acb$

• Using methods of Dabrowski one can show

$$(\sigma_{-i}^{\varphi_q}\otimes 1)\left([\Xi_q^{-1}]^*
ight)=1\otimes 1^\circ+o(|q|)$$

• Hence

$$\xi_j^{(q)} = X_j + o(|q|)$$

• Give an alternate proof to a result of Popa (1995) that every subfactor planar algebra can indeed be realized as the standard invariant of a II_1 subfactor

(日)

- Give an alternate proof to a result of Popa (1995) that every subfactor planar algebra can indeed be realized as the standard invariant of a II_1 subfactor
- Given a subfactor planar algebra P = (P_n)_{n∈ℕ}, create a series of algebras with traces (Gr_kP, ∧_k, Tr_k)_{k≥0} where the multiplication ∧_k and trace Tr_k are encoded diagrammatically via a planar tangles

イロト イポト イヨト イヨ

- Give an alternate proof to a result of Popa (1995) that every subfactor planar algebra can indeed be realized as the standard invariant of a II_1 subfactor
- Given a subfactor planar algebra $\mathcal{P} = (P_n)_{n \in \mathbb{N}}$, create a series of algebras with traces $(Gr_k \mathcal{P}, \wedge_k, Tr_k)_{k \geq 0}$ where the multiplication \wedge_k and trace Tr_k are encoded diagrammatically via a planar tangles
- Then there is a series of trace-preserving embeddings $Gr_k \mathcal{P} \hookrightarrow \mathcal{B}(\mathcal{F}(\mathcal{H}))$ which generate a tower of von Neumann algebras $(M_k)_{k\geq 0}$ whose inclusions recover \mathcal{P} as its standard invariant

< ロ > < 同 > < 回 > < 回 >

- Give an alternate proof to a result of Popa (1995) that every subfactor planar algebra can indeed be realized as the standard invariant of a II_1 subfactor
- Given a subfactor planar algebra $\mathcal{P} = (P_n)_{n \in \mathbb{N}}$, create a series of algebras with traces $(Gr_k \mathcal{P}, \wedge_k, Tr_k)_{k \geq 0}$ where the multiplication \wedge_k and trace Tr_k are encoded diagrammatically via a planar tangles
- Then there is a series of trace-preserving embeddings $Gr_k \mathcal{P} \hookrightarrow \mathcal{B}(\mathcal{F}(\mathcal{H}))$ which generate a tower of von Neumann algebras $(M_k)_{k\geq 0}$ whose inclusions recover \mathcal{P} as its standard invariant
- M₀ lies in the centralizer of a Γ(ℝ^N, U_t)" with respect to the free quasi-free state for some {U_t}_{t∈ℝ}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Give an alternate proof to a result of Popa (1995) that every subfactor planar algebra can indeed be realized as the standard invariant of a II_1 subfactor
- Given a subfactor planar algebra $\mathcal{P} = (P_n)_{n \in \mathbb{N}}$, create a series of algebras with traces $(Gr_k \mathcal{P}, \wedge_k, Tr_k)_{k \geq 0}$ where the multiplication \wedge_k and trace Tr_k are encoded diagrammatically via a planar tangles
- Then there is a series of trace-preserving embeddings $Gr_k \mathcal{P} \hookrightarrow \mathcal{B}(\mathcal{F}(\mathcal{H}))$ which generate a tower of von Neumann algebras $(M_k)_{k\geq 0}$ whose inclusions recover \mathcal{P} as its standard invariant
- M₀ lies in the centralizer of a Γ(ℝ^N, U_t)" with respect to the free quasi-free state for some {U_t}_{t∈ℝ}

Theorem 3.1 (N. 2014)

Using non-tracial transport it is possible to perturb the above embeddings without altering the tower of non-commutative probability spaces $(M_k)_{k\geq 0}$. Furthermore, given another state τ_k on $Gr_k \mathcal{P}$ one obtains criterion for when the von Neumann algebra associated to the GNS representation of τ_k is isomorphic to M_k .